欢迎来到专业的唐家秘书网平台! 工作总结 工作计划 心得体会 思想汇报 发言稿 申请书 述职报告 自查报告
当前位置:首页 > 专题范文 > 公文范文 > 正文

数学毕业论文开题报告3篇(全文完整)

时间:2023-01-04 09:20:05 来源:网友投稿

数学毕业论文开题报告1  一、选题的依据及课题的意义  1、选题的依据:  数学在现在科学发展中起着很重要的作用,矩阵是数学的一个分支,通过本专业开的《高等代数》这门课程的学习,对矩阵有了一定的了解下面是小编为大家整理的数学毕业论文开题报告3篇(全文完整),供大家参考。

数学毕业论文开题报告3篇(全文完整)

数学毕业论文开题报告1

  一、选题的依据及课题的意义

  1、选题的依据:

  数学在现在科学发展中起着很重要的作用,矩阵是数学的一个分支,通过本专业开的《高等代数》这门课程的学习,对矩阵有了一定的了解。在课余时间对矩阵理论与矩阵分析等相关书籍的阅读,了解到矩阵对于分析问题解决问题有很大的帮助。矩阵理论也在很多领域里有所应用,可以说矩阵对于现代科学具有不可替代的作用。为此我们需要深入了解矩阵的一些性质及其关系。矩阵的等价、相似、合同是矩阵很重要的性质,这些性质对于解决问题有很大的帮助。

  2、课题的意义:

  通过对矩阵等价、相似、合同的探讨加深对矩阵的了解。也通过本次研究更深入的理解并运用矩阵理论的性质特别是矩阵的等价、相似、合同这三大性质来解决社会活动的所会遇到的问题。通过对矩阵等价、相似、合同这三大关系的探讨,能够了解它们的标准形的应用有助于提高学生利用矩阵等价、相似、合同这三大关系来分析问题和解决问题的能力。

  二、研究动态及创新点

  1、研究动态:

  目前已经有许多国内外的知名学者对矩阵进行研究,矩阵理论对于问题的解决有着很重要的作用。就我阅读一些参考文献:《矩阵分析与应用》张贤达著、《矩阵理论及其应用》将正新,施国梁著、《矩阵论》戴华著等了解到现在已经有很多学者对矩阵有了一定的研究。这些文献对矩阵的一些理论及其性质都做了较深入的阐述,对于矩阵的等价、相似、合同一些相关的理论证明和应用都有了相关说明。

  2、创新点:

  通过对矩阵论及矩阵分析的学习,熟练掌握矩阵的等价、相似、合同的相关性质和判别。并且对这三者的区别与联系做了相关阐述。同时通过对矩阵的这些理论研究,总结了矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。同时还运用对矩阵的等价、相似、合同的性质对一些相关问题的简化及解决。

  三、研究内容及实验方案

  研究内容:

  1、 矩阵的概念及其一般特性。

  2、 矩阵等价、相似、合同三大关系的性质、判别。

  3、 矩阵等价、相似、合同三大关系的区别与联系。

  4、 矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。

  5、通过运用相关理论研究解决一些简单问题的例子。

  实验方案:

  1、通过图书馆查找阅读相关文献并运用所学知识对其进行分析和总结。

  2、通过网上查找相关信息并对其分析总结。

  3、与老师和同学一同探讨矩阵的运用。

  四、毕业论文工作进度

  1、论文开题和选题 20xx.1.15—20xx.2.1

  2、阅读参考文献 20xx.3.12—20xx.3.18

  3、撰写毕业论文开题报告 20xx.3.19—20xx.3.25

  4、撰写毕业论文初稿 20xx.3.26—20xx.4.29

  5、毕业论文中期检查 20xx.4.30—20xx.5.6

  6、完成毕业论文 20xx.5.7—20xx.5.20

  7、准备毕业论文答辩20xx.5.21—20xx.5.27

  8、毕业论文答辩 20xx年六月中旬

  五、主要参考文献

  [1] 高等代数(第二版) [M].北京大学数学系几何与代数教研室代数小组.高等教育出版社.20xx.

  [2] 矩阵论 [M]. 方保镕,周继东,李医民. 清华大学出版社.20xx.

  [3] 线性代数 [M]. 刘先忠, 杨明. 高等教育出版社.20xx.

  [4]矩阵分析与应用[M].张贤达.清华大学出版社.20xx.

  [5]矩阵论[M].张凯院,徐仲.西北工业大学出版社.20xx.

  [6]Advanced Linear Algebra[M].Steven Roman.世界图书出版社.20xx.

  [7]矩阵分解的应用[J].王岩,王爱青.青岛建筑工程学院学报. 20xx(2).

  [8]关于矩阵的分解形式[J].屈立新.邵学院学报(自然科学版).20xx(3).

  [9]正交矩阵的正交分解[J].曲茹,王淑华.高师理科学刊.20xx(2).

数学毕业论文开题报告2

  一、激发学生学习音乐的兴趣,开发学生的音乐潜能,促进学生和谐发展。

  我国传统的音乐教育长期受专业音乐教育的影响,过于强调音乐知识传授的系统性,忽视音乐教学的审美愉悦性;教材内容重视思想性、艺术性,却没有充分兼顾中小学由于年龄、兴趣和认识水*等方面的特点而产生的独特的审美需求;教师教学手段单一,教学的理性化色彩浓厚等因素造成了学生喜欢音乐而对音乐课没有兴趣的怪现象。

  兴趣是最好的老师,是能力的幼芽,是积极性的动力,是成功的沃土。正如孔子所说:“知之者不如好之者,好之者不如乐之者。”由此可见兴趣在学习中起着重要作用。在时代的呼唤下,以审美为核心,以兴趣爱好为动力。面对设计新颖、插图精美、内容丰富的教材,学生的感官首先得到了强烈的刺激,激发了学习兴趣,美的表现欲被充分调动。在音乐课堂教学中应加强以激发学生学习音乐兴趣为前提的审美基础教育,无需花大量的时间学习诸如音阶、音程、和弦、调式等过于专业化的知识,也无需提出诸如“重视中声区发声训练”、“有气息支持地歌唱”等技术性要求,以免扼杀学生学习音乐的兴趣。努力创造适宜每个青少年儿童音乐潜能开发的音乐教育环境,促使学生开发音乐智能,推动学生各方面和谐发展。

  二、强调参与意识,发展学生的实践能力。

  音乐课是一门实践性很强的课程,学习音乐要靠学习者亲身感悟,决不能靠教师讲述完成。正如柏拉图所说:“强迫学习的知识是不会保存的。”只有当学生真正成为学习的主人,全身心地投入到音乐的情感体验中,才能获得积极的情感因素,包括音乐爱好、价值观,并为终身音乐学习和实践奠定基础。

  在传统教学过程中,学生往往被动地、被强迫地学习,参与性不高,课堂气氛讲究一个“静”字,于是造就了一批“高分低能”“人云亦云”“缺乏独立见解” 的学生。

  在新的音乐教学中,理念将由“静”转变为“动”,注重学生的主体参与性,积极创造学生主动参与的环境,使学生在教师的指导下主动地、富有个性地学习。新的音乐教材在每个单元中设置增添了有趣的实践环节,通过让学生谈体会、说感受、想意境、做表演等活动,调动学生参与音乐活动的积极性,极大地开阔了学生的思维空间,为培养学生的音乐实践能力创造了条件。在教学过程中,我紧紧抓住“注重个性发展,重视音乐实践”这一基本理念,充分体现学生的主体地位,让学生多参与到学习中,并置身于音乐的美好境界中。

  三、注重以学生为主体,营造宽松、愉悦的学习氛围。

  教师在教学过程中应与学生积极互动,共同发展,同时注重学生的独立性和自主性的培养,并提倡在实践中学习。也就是说当今教育要以学生为本,改变过去音乐教学中以教师、书本为主的方式,取而代之以学生的生活经验、能力和需要为出发点,为学生提供更广阔的学习空间。

  要营造美丽、宽松、愉悦的学习氛围。黑格尔曾说:“音乐是心情的艺术,它直接针对着心情。”只有在没有嘲笑、没有敌意的环境里,学生才能没有担心。在情感融合的课堂气氛里,学生才有可能敞开心扉,真正体会音乐所给予的美,感受音乐实践中那份宽松和愉悦。这样才能充分调动学生的积极性、创造性。音乐教师要与学生一起*等参与活动,鼓励、帮助、引导学生,而不同于在以往旧的教学模式中充当的"裁判员或权威者角色。这样,既发挥了教师的主导作用,又确保了学生的主体地位。在音乐教学实践中,教师要遵循教育发展的内在规律,确定学生的主体地位。要充分利用课堂教学的主战场,激发学生学习音乐的兴趣和求知欲,充分开发学生潜能。要善于根据教学的目的和任务、学生的年龄特点及教学设备条件,合理运用各种教学方法。所选用的教学方法,既要有利于学生正确地领会和系统地掌握材料,又要有利于培养学生的技能、技巧、知识的运用能力;既要有利于激发学生的学习欲望,又要有利于培养他们的创造精神和进取精神。内容上讲究“少”而“精”,形式上讲究“多”而“活”,使学生在课堂上能够集中精力,专心听讲,当堂消化所学内容,达到事半功倍的教学效果。根据学生的特点和兴趣,适当安排少量课外作业,有助于学生巩固知识、开阔视野,培养终身学习和可持续发展的能力。课外作业的形式可多种多样,内容应该是基本型的,量不要太多,度不要太难,一开始要让学生在学得比较轻松的情况下,逐步培养学习兴趣,进而根据学生的认知发展规律、身心发展规律与获取音乐知识、音乐技能之间的联系,循序渐进地引导学生进行探究式学习,养成良好的学习习惯,掌握科学、高效的学习方法。

  要重视我国中小学音乐教育事业,提高中小学学生德、智、体、美素质。以上三个方面是我的教学实践,希望我国音乐教育事业能够再上一个新的阶段。

数学毕业论文开题报告3

  一、课题的来源及意义

  通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。

  积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。

  二、国内外发展状况及研究背景

  国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。

  三、课题研究的目标和内容

  通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。

  (1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。

  (2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。

  (3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。

  四、本课题研究的方法

  课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。

  五、课题的进度安排:

  第一阶段:搜集资料,确定选题范围,联系指导老师(20xx秋1--7周)

  第二阶段:选定题目、填写开题报告,准备开题 (20xx秋8--12周)

  第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20xx秋13周--20xx春6周)

  第四阶段:撰写初稿、在指导老师的指导下修改论文 (20xx春7--14周)

  第五阶段:提交论文,准备答辩,论文总结 (20xx春15--16周)