*行四边形的面积教案 作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么优秀的教案是什么样的呢?以下是小编整理的*行四边下面是小编为大家整理的*行四边形面积教案,供大家参考。
*行四边形的面积教案
作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么优秀的教案是什么样的呢?以下是小编整理的*行四边形的面积教案,仅供参考,大家一起来看看吧。
*行四边形的面积教案1
教学目标:
1.使学生通过探索,理解和掌握*行四边形的面积计算公式,会计算*行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点:
1、掌握*行四边形的面积计算公式。
2、会计算*行四边形的面积。
教学难点:理解*行四边形面积公式的推导过程.
教具准备:课件,*行四边形的纸片。
学具准备:学习卡,每个学生准备一个*行四边形。
教学过程:
一、导入
1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究*行四边形面积的计算。
板书课题:*行四边形的面积
二、*行四边形面积计算
1.用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个*行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到*行四边形与长方形的底与长、高与宽及面积分别相等;这个*行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导*行四边形面积计算公式。
(1)引导:如果不用数方格,那能不能计算出*行四边形的面积呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个*行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的*行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—*移—拼的过程。
(3)我们已经把一个*行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的*行四边形,你发现了什么?(小组讨论)
小组汇报,教师归纳:
我们把一个*行四边形转化成为一个长方形,它的面积与原来的*行四边形面积相等。
这个长方形的长与*行四边形的底相等,
这个长方形的宽与*行四边形的高相等,
因为 长方形的面积=长×宽,
所以 *行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把*行四边形的面积计算公式用字母表示出来。
4.出示例1。读题并理解题意。
三、巩固和应用
1、判断,并说明理由。
(1)两个*行四边形的高相等,它们的面积就相等( )
(2)*行四边形底越长,它的面积就越大( )
2、计算。
四、体验
今天,你学会了什么?怎样求*行四边形的面积?*行四边形的面积计算公式是怎样推导的?
五、作业:练习十五第1、2题。
六、板书设计
*行四边形面积的计算
长方形的面积=长×宽
*行四边形的面积=底×高
S=ah
《*行四边形的面积》教学反思
本节课是学生在已掌握了长方形面积的计算和*行四边形各部分特征的基础上进行*行四边形的面积的计算的,我能根据学生已有的知识水*和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握*行四边形面积的计算公式,能正确计算*行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和*移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是*行四边形面积计算公式的推导,使学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和*行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和*移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,*行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、*移把*行四边形转化为长方形,从而找到*行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到*行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想*行四边形的面积可能与谁有关,该怎样计算,接着引出你能将*行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把*行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把*行四边形转化成长方形的方法有三种,第一种是沿着*行四边形的顶点做的高剪开,通过*移,拼出长方形。第二种是沿着*行四边形中间任意一高剪开,第三种是沿*行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到*行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!
*行四边形的面积教案2
【设计理念】
本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究*行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握*行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容
【教学内容】
《义务教育教科书》人教版数学课本五年级上册87——88页。
【教材、学情分析】
*行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习*面图形面积计算的进一步拓展。应用转化的数学思想方法推导*面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对*行四边形的特征有了一定的了解,但对*行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
【教学目标】
1、经历*行四边形面积公式的探究推导过程,掌握*行四边形面积计算方法。能应用公式解决实际问题。
2、在探究的过程中感悟“转化”的数学思想和方法。
3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。
4、引领学生回顾反思,获得基本的数学活动经验。
【教学重点】
推导*行四边形面积计算公式。应用公式解决实际问题。
【教学难点】
理解*行四边形的面积计算公式的推导过程。
【教学准备】
*行四边形纸片若干,直尺、剪刀、。
【教学过程】
一、创设情境,激发兴趣。
讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。
【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习*行四边形的面积是有价值的,从而诱发学习的欲望。】
二、组织探究,推导公式。
1、联系旧知,做出猜想。
看到这个题目,你想到了我们学过哪些有关面积的知识?
大胆猜想:*行四边形的面积可能和哪些条件有关呢?该怎样计算?
【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测*行四边形的面积公式。】
2、初步验证,感悟方法。
根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。
引导学生:可以用数方格的方法试一试。(出示方格纸中的*行四边形)
学生数方格并来验证自己的猜想。
【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到*行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】
3、剪拼转化,发现规律。
除了数方格,我们还能用什么方法来验证呢?(学生思考)
能否将*行四边形转化成我们学过的图形再来进行计算呢?
(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。
(2)展示交流。(演示)
【设计意图:把*行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】
4、观察比较,推导公式。
剪拼后的长方形与原来的*行四边形有什么关系?*行四边形的面积怎样计算?为什么?用字母怎样表示?
小结: 长方形面积 = 长 × 宽
*行四边形面积 = 底 × 高
S = a × h
【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导*行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】
5、展开想象,再次验证。
是不是所有的*行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?
学生先闭眼想象,再借助手中的工具加以验证。
6、回顾反思,总结经验。
回顾我们推导*行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。
把*行四边形转化成长方形面积。(剪拼—转化)
然后找到转化前、后图形之间的联系。(寻找—联系)
根据长方形面积公式推导出*行四边形面积公式。(推导—公式)
【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】
三、实践应用,解决问题。
1、解决实际问题
*行四边形花坛底是6米,高是4米,它的面积是多少?
2、出示如下图
算一算停车场里两个不同的*行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
3、下面是块近似*行四边形的菜地(引导学生理解计算*行四边形面积的时候,底和高必须是相对应的。)
王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?
4、现在你明白阿凡提是怎么打败巴依的了吗?
引导学生明白:阿凡提利用了*行四边形易变形的特性调整了篱笆。
思考:阿凡提调整篱笆后的菜地面积变为100*方米,底20米,你知道高是多少吗?
【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】
四、总结全课,拓展延伸。
转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。
通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于*行四边形面积计算的问题。
【设计意图:试图把学生带入更加广阔的学习空间。】
五、板书设计
*行四边形的面积
长 方 形面积 = 长 × 宽
*行四边形面积 = 底 × 高
S = a × h
*行四边形的面积教案3
【教材分析】
本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《*行四边形的面积》。*行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解*行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算*行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算*行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与*行四边形之间的关系,从而推导出计算*行四边形面积的公式。
【教学目标】
知识与能力目标:使学生能运用数方格、割补等方法探索*行四边形面积的计算公式,初步感受转化思想;让学生掌握*行四边形面积的计算公式,能够运用公式正确计算*行四边形的面积。
过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。
情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。
【学情分析】
*行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等*面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历*行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
【教学重点】掌握*行四边形面积计算公式。
【教学难点】*行四边形面积计算公式的推导过程。
【教具】两个完全一样的*行四边形、不规则图形、小黑板、剪刀、多媒体及课件。
【教学过程】
一、创设情境,引入课题。
1、游戏:小小魔术师。教师出示不规则图形。
(1)师:你能直接计算出这个图形的面积吗?
(2)师:你能计算出这个图形的面积吗?说一说用什么方法?
(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
2、小结:刚才同学们先将不*整的部分剪下,再*移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
(设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究*行四边形面积公式的推导打下坚实的基础。)
二、激趣引思,导入新课。
师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的*行四边形胶合板。我觉得这是一件好事,因为*行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?
生1:我想知道要花多少钱才可以做成。
生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!
生3:我想知道这块胶合板的面积有多大。
师:我听出来了,大部分同学都想知道这块*行四边形胶合板的面积,这节课我们就来探究“*行四边形的面积”。(板书课题:*行四边行的面积)
(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)
三、动手操作,探究发现。
1、用数方格的方法启发学生猜想*行四边形面积的计算方法。
师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出*行四边形的面积。
教师用课件演示:先出示一个画有方格(每个方格的面积是1*方厘米)的长方形,再将一个*行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。
(1)这个*行四边形的面积是多少*方厘米?
(2)它的底是多少厘米?
(3)它的高是多少厘米?
(4)这个*行四边形的面积跟它的高与底有什么关系?
(5)请同学们猜一猜:怎样计算*行四边形的面积?
2、引导学生把*行四边形转化为长方形,验证猜想推出*行四边形的面积公式。
我们用数方格的方法得到一个*行四边形的面积,但是用这个方法计算面积方便吗?
生:不方便。
师:既然不方便,我们能不能用更方便的方法来解决呢?
小组交流,学生讨论,发表意见。
生:用剪和拼的方法。
师:(出示一个*行四边形)这个*行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)
师:这条虚线也就是*行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)
师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?
(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)
师:怎样移过去呀?*着移到右边,这种方法我们把它叫做*移。
师:再请一个同学展示一下,他的剪法有什么不一样吗?
(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?*移过去也拼成了一个长方形。 (展示学生的成果)
师:老师有几个问题,我们把*行四边形转化成了长方形,原来*行四边形的面积和这个长方形的面积相等吗?*行四边形的底和高分别与长方形的长和宽有什么关系呢?
小组讨论:
⑴原来*行四边形的面积和拼成的长方形的面积相等吗?
⑵原来*行四边形的底与拼成的长方形的长有什么关系?
⑶原来*行四边形的高与拼成的长方形的宽有什么关系?
师:谁来说说你的想法。它的面积没有多,也没有少,*行四边形的面积等于剪拼后的长方形的面积。(板书)*行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长,宽=高)
师:长方形的面积=长×宽,那么*行四边形的面积怎样求?
生:*行四边形的面积=底×高(板书)
师:同意吗?谁能讲一讲,为什么*行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)
教师小结方法指名让生叙述。
师:如果用S表示*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形的面积计算公式可以写成S=ah(板书:S=ah)。
师:现在我们可以确定当初的猜想谁是正确的?
(设计思路:让学生对“*行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)
四、实践应用,巩固提高。
师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)
教师板书:5×4=20(*方米)
出示例1 (同桌讨论,独立完成,最后全班交流。)
教师板书:S=ah=6×4=24(*方米)
师:同学们真会动脑筋,能运用所学知识解决生活中的问题。
(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)
五、分层练习,强化应用。
1、填空。
(1)把一个*行四边形转化成一个长方形,它的面积与原来的*行四边形( )。这个长方形的长与*形四边形的底( ),宽与*行四边形的高( )。*行四边形的面积等于( ),用字母表示是( )。
(2)0.85公顷=( )*方0.56*方千米=( )公顷
2、计算下面各个*行四边形的面积。
(1)底=2.5cm,高=3.2cm。 (2)底=*dm,高=7.5dm。
3、解决问题。
(1)小明家有一块*行四边形的菜地,面积是120*方米,量得底是20米,它的高是多少?
(2)一块*行四边形钢板,底8.5m,高6m,它的面积是多少?如果每*方米的钢板重38千克,这块钢板重多少千克?
(设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)
六、总结升华,拓展延伸。
1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?
(设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)
2、课后练习
(1)、练习十五第1题,第2题。(任选一题)
(2)、解决问题:选一个*行四边形的实物,量出它的底和高,并计算出面积。
*行四边形的面积练习题
1、填一填
(1)1*方米=( )*方分米=( )*方厘米
(2)把一个*行四边形转化成长方形,它的面积与原来的*行四边形的面积( )。
转化后长方形的长与*行四边形的( )相等,宽与*行四边形的( )相等。
(3)*行四边形的面积=( )×( ),字母公式为( )
(4)一个*行四边形的底是8.5米,高是3.4米,求其面积的算式是( )
(5)等底等高的两个*行四边形的面积( )
2、判断
(1)形状不同的两个*行四边形面积一定不相等( )
(2)周长相等的两个*行四边形面积一定相等( )
(3)知道一个*行四边形的底和其对应的高的长度就能求出它的面积( )
3、一块*行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?
24厘米
50厘米
升级跷跷板
4、有一个*行四边形的面积是56*方厘米,底是7厘米,高是多少厘米?
5、一快*行四边形的菜地,底是36米,高是25米,每*方米收白菜8千克,这块地共收白菜多少千克?
6、一个*行四边形的果园,底是30米,高是15米,中了90棵梨树,*均每棵梨树占地多少*方米?
智慧摩天轮
7、已知下图中正方形的周长是36厘米,求*行四边形的面积。
8、一块*行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?
*行四边形的面积教案设计
【教材分析】
本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“*行四边形区域”。*行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对*行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算*行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算*行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与*行四边形的关系,推导出*行四边形面积的计算公式。
(教学目标)
知识与能力目标:使学生运用数的*方法和填充法,探索*行四边形面积的计算公式,初步感受变换思想;使学生掌握*行四边形面积的计算公式,并能正确地利用该公式计算出*行四边形的面积。
过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。
情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。
【学习情况分析】
*行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解*行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等*面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画*行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。
【教学重点】掌握*行四边形面积的计算公式。
【教学难点】*行四边形面积计算公式的推导过程。
【教学辅助工具】两个相同的*行四边形、不规则图形、黑板、剪刀、多媒体、课件。
(教学过程)
首先,创建情景并引入主题。
1.游戏介绍:小魔术师。老师展示不规则的图形。
老师:你能直接算出这个图形的面积吗?
老师:你能算出这个图形的面积吗?告诉我怎么用它?
老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?
2. 小结:刚才同学们把不*整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)
(设计思维:“暖过去”是课堂教学开始的重要环节,起着承上启下的作用。通过提出复习问题,激发学生对已有知识的复习,拓宽学生的学习渠道
*行四边形的面积教案设计
教学目标:
(1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算*行四边形面积。
(2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和*移的思想。
(3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。
教学重点:
理解并掌握*行四边形的面积计算公式,并能用公式解决实际问题。
教学难点:
理解*行四边形的面积公式的推导过程。
教具、学具准备:
课件、长方形和*行四边形图片、剪刀、*行四边形框架等。
教学过程:
一、创设情境、导入新课。
大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为*行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)
你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那*行四边形的面积我们怎样求呢?这节课,我们就共同来探讨*行四边形的面积。(板书课题)
出示长方形和*行四边形教具,引导学生观察后说一说长方形和*行四边形的各部分名称。长方形与*行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求*行四边形的面积呢?(课件演示)
二、自主探究,合作验证
探究一:用数方格的的方法探究*行四边形的面积。
请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求*行四边形的面积,认真按提示填表。出示温馨提示:
①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。
②填完表后,同学们相互议一议,并谈一谈发现。
你是怎么数的?你有什么发现吗?能猜测一下*行四边形的面积公式是什么吗?(学生汇报)
探究二:用割补的方法来验证猜测。
小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出*行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)
我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把*行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)
(1)用剪刀将*行四边形转化成我们学过的其他图形。(剪的次数越少越好。)
(2)剪完后试一试能拼成什么图形?
师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和*行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):
回顾发现过程:
1、把*行四边形转化成长方形后,( )没变。因为长方形的长等于*行四边形的( ),宽等于*行四边形的( ),所以*行四边形的面积=( ),用字母表示是( )
2、求*行四边形的面积必须知道*行四边形的( )和( )。
探究过程小结(板书)
师:小刚和小明马上到校门前测量了长方形和*行四边形。得出:长方形的长是6米,宽是4米,*行四边形的底是6米,高是4米。
然后他们手拉手找到老师说了一些话。你知道他们说了什么?
生:长方形和*行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)
三、运用新知,练中发现
1、基本练习
(1)口算下面各*行四边形的面积
A、底12米,高3米:
B、高4米,底9米;
C、底36米,高1米
通过这组练习,你有什么发现吗?(教学课件)
发现一:发现面积相等的*行四边形,不一定等底等高。
(2)画*行四边形比赛(大屏幕出示比赛规则)
比赛规则:
1、拿出百宝箱中的方格纸。在方格纸上的两条*行线间,画底为六个格(底固定),看能画出多少个*行四边形。
2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)
发现二:1.发现只要等底等高,*行四边形面积就一定相等。
2.等底等高的*行四边形,形状不一定完全相同。
四、总结收获,拓展延伸
1、通过这节课的学习,你知道了什么?
2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?
大屏幕出示(教学课件演示)
*行四边形,特点记心中。
面积同样大,形状可不同。
等底又等高,面积准相同。
要是求面积,底高来相乘。
(齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。
拓展延伸
请大家看老师的演示。(用*行四边形框架演示由长方形拉成*行四边形)。如果把长方形拉成*行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。
五、板书设计:
*行四边形的面积教案设计
1.进一步认识*行四边形是中心对称图形。
2.掌握*行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。
3.充分利用*面图形的旋转变换探索*行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。
教学重点与难点
重点:利用*行四边形的特征与性质,解决简单的推理与计算问题。
难点:发展学生的合情推理能力。
教学准备直尺、方格纸。
教学过程
一、提问。
1.*行四边形的特征:对边( ),对角( )。
2.如图,在*行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆*行四边形的特征。)
二、引导观察。
1.按照课本第30页“探索”画一个*行四边形ABCD,对角线AC、BD相交于点O,量一量并观察,OA与OC、OB与OD的关系。
2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与OD的关系了吗?
通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出*行四边形的特征:*行四边形的对角线互相*分。
(培养学生用自己的语言叙述性质。)
三、应用举例。
如图,在*行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。
(引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握*行四边形对角线互相*分以及对边相等的应用。)
例3如图,在*行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?
(本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)
四、巩固练习。
1.如图,在*行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。
2.在*等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。
3.*行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。
4。试一试。
在方格纸上画两条互相*行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出*行线之间的垂线段的长度。得到*行线又一性质:*行线之间的距离处处相等。
5.练习。
如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条*行线I1、l2之间画出其他与△ABC面积相等的三角形吗?
五、看谁做得又快又正确?
课本第34页练习的第一题。
六、课堂小结
这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?
七、作业
补充习题
*行四边形的面积教案设计
*行四边形的面积计划学时1
学习内容分析
学生已经了学习长方形,正方形,三角形的面积,而本节课开始怎样计算探究*行四边形的面积,计算*行四边形的面积既是对之前学过的知识的延续又是对接下来学习梯形等面积的铺垫。因此,学好它既能对旧知识的迁移又能为今后的学习打下基础。
学习者分析
根据心理学知识该阶段的学生知识迁移能力有待提高,空间想象能力,观察能力,动手操作能力较强,
教学目标知识与技能1、认知目标:通过学生观察、讨论、动手体验,使学生理解并掌握*行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。
2、能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3.情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
过程和方法:合作学习,自主探索
情感态度与价值观让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
知识点学习水*媒体内容与形式使用方式使用效果
*行四边形面积的计算还未学*行四边形面积公式,但已经学习了三角形,长方形面积公式让同学先自己试图转化计算,然后在ppt展示*行四边形与长方形的转换过程在ppt展示*行四边形与长方形的转换过程使得同学更形象生动了解长方形和*行四边形之间的转换,有利于同学推导出*行四边形的面积公式
课后练习同学们已经学习了*行四边形的面积但还未实践应用在ppt展示练习题在ppt展示练习题同学更形象生动了解*行四边形公式,有利于同学的学习
教学过程
教学环节教学内容所用时间教师活动学生活动设计意图
展示出长方形问同学这样拉回变成生命形状,生命改变了,什么没有改变为*行四边形的讲解和本节课的内容铺垫5分钟展示出长方形并通过拉其一端展示出*行四边形,同时扔出疑问给同学解决,为本节课做铺垫学生通过想象观察配合课堂进行由生活中学生熟悉的事物引入新知,激发起学生的学习兴趣,增强了学生的`探索欲望和积极性,同时为新知的学习做好了情感铺垫
让同学们通过已经学习的知识计算*行四边形的面积
同学们通过已经学习的知识计算*行四边形的面积,运用旧知识迁移的方法计算,巩固旧知识12分钟教师下去巡视同学做的情况,进行总结,然后再在ppt展示学生通过已经学习的知识在小组讨论下用不同的方法计算出*行四边形的面积这一环节充分发挥学生学习的主体性,培养学生的探索精神,为学生提供了开放的探索时间和空间,鼓励创新、发现;放手让他们去操作、去探索,使学生获得战胜困难,探索成功的体验。从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主题,体现了活动化的数学学习过程,可以有效提高课堂教学效率与质量。
通过ppt的转换总结得出*行四边形面积公式*行四边形面积公式的推导15分钟教师在ppt展示各种转换方法也把长方形转换*行四边形展示出来引导同学说出*行四边形的面积对刚刚的学习进行总结,得出*行四边形的面积运用生动形象的课件,再一次演示其中一种方法的验证过程.并介绍*行四边形的"高"和"底".让学生体验将*行四边形转化成长方形的过程,加深学生对图形转化的理解,并在具有挑战性的活动中激发学生参与探究活动的兴趣
对*行四边形公式进行巩固练习同学已经学*行四边形的公式但还未实际应用8分钟教师根据学生所学情况在ppt展示所对应练习题学生根据所学的知识做练习巩固知识点通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心
课堂教学流程图
教学过程
一、情境创设,揭示课题
师:同学们,你们看老师手上拿的什么形状?如果老师现在固定这个端点,再将右边这个端点向右拉,你们想象一下,它会变成什么形状呢?
生:*行四边形
师:对了,就是*行四边形,你们在这个过程中什么改变了什么没有发生改变呢?
生:形状,角度,面积
师:那面积是变大还是变小
生:此时回答不一
教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,*行四边形的面积。(板书)
二、创设问题情景,引发自主探索.
1、提出问题,鼓励猜测
那么大家猜一猜*行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个*行四边形,(演示)还可能与什么有关?(高)那么*行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、自主探究、验证猜测:
师:用剪刀把*行四边形剪成已经学习过的图形来计算他的面积,想一想你打算用什么方法来计算?
3、展示成果,互相交流
同学的计算方法不一,抽取最简单的进行讲解,引出数格子的方法,让同学们总结长方形面积和*行四边形的面积关系
指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。
方法二:转化法
师:有什么发现?
师:你们成功的把*行四边形转化成了长方形,这一长方形与原来的*行四边形有什么关系?
生:长方形的长等于*行四边形的底、宽等于*行四边形的高
师:是这样吗?师课件演示解说强调*移
师:还有其他的剪拼方法吗?
4、整理结论
师:你是怎么剪的?沿什么剪的?为什么要沿高剪开?拼出的长方形和原来的*行四边形之间,你发现了什么?
提问:(1)*行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与*行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求*行四边形的面积的方法呢?
师:你们觉得这几种方法有没有共同之处?
(都是沿高剪开的,都是把*行四边形转化成长方形)
课件演示,结合课件填写各部分间的相等关系。
板书:底=长高=宽长方形的面积=正方形的面积
师:我们一起读一下我们发现的结论。
师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。
师:你学到了些什么?
师:如果用表示S*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形面积的计算公式可以写成:S=ah
三、方法应用
师:现在我们来算一下这块*行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)
师:这个*行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)
师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(S)。你后面用的单位为什么是*方厘米呀?
四、梳理知识,总结升华
师:这节课同学们通过猜想发现*行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?能说说这节课,你是怎么学习的?你有哪些收获吗?
五、课堂检测
修改建议
结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。
*行四边形的面积教案4
教学内容:课本第72页。
教学要求:使学生能比较熟练地应用*行四边形的计算公式,解答有关问题。
教学过程:
一、复习。
1.*行四边形面积计算公式是什么?它是怎样推导出来的?(*行四边形的面积=底×高,是通过把*行四边形割补成长方形推导出来的)
2.填空。
0.28*方米=()*方分米=()*方厘米
32000*方米=()公顷
0.5*方千米=()公顷。
3.求下面*行四边形的面积。(口答)
(1)底18厘米,高10厘米
(2)底25分米,高4分米
(3)底12.5米,高8米
(4)底16米,比高多6米
(5)底和高都是30厘米
二、新授。
1.揭示课题。
师:昨天我们学习了*行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:*行四边形面积公式的应用)
2.出示例题。
一块*行四边形钢板(如下图),它的面积是多少?(得数保留整数)
学生口述解题思路:求钢板的面积就是求*行四边形的面积。
学生独立解答
4.8×3.5?17(*方米)
答:它的面积约是17*方米
补充问题:如果这块钢板每*方米重3.9千克,钢板重多少千克?
总重量=每*方米重量×*方米数
学生试做。
集体评讲。
钢板重量:3.9×17=66.3(千克)
三、巩固练习。
1.P72页做一做。
通过书面练习第1题达到巩固求*行四边形面积的计算能力。
指导书本第2题近似*行四边形的计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的*行四边形。找出相应的底和高的数值即可求出它的近似面积。
2.练习十七第6题。
先让学找出图中的两个*行四边形,然后提问:这两个*行四边形的底和高分别是多少?求它们的面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)
学生独立计算后,问:这两个*行四边形的面积相等吗?为什么?(它们的底和高分别相等)
得出:底和高分别相等的*行四边形,面积也相等。
判断:下面的*行四边形面积相等吗?
3.练习十七第7题。
学生独立完成。集体核对。
4.练习十七第8题。
先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。
四、作业。
练习十七第9题。
五、补充练习。
已知一个*行四边形的面积是28*方米,底是7米,求高是多少?
引导学生思考:因为:a·h=S
所以:h=S÷a
*行四边形的面积教案5
教学内容:
课本第73-74页练习十七第4-9题
教学要求:
1、能比较熟练地运用*行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
教学重点:
能比较熟练地运用*行四边形的计算公式,解答有关的应用题。
教具准备:
口算卡片。
教学过程:
一、复习
1、*行四边形的面积计算公式是什么?
2、口算:
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
3、求*行四边形的面积。
(1)底12米,高是7米;(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米
4、出示课题。
二、新授
1、补充例题
一块*行四边形的麦地底长125米,高24米,它的面积是多少*方米?
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
(3)如果问题改为:“改种花生,一年可收花生900千克,这块地*均每公顷可收花生多少千克?”又怎么想?
与上题比较,从数量关系上看,什么是相同的?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
A900×(125×24÷10000)
B900÷(125×24)
C900÷(125×24÷10000)
2、(略)
三、巩固练习
练习十七第6、7题
四、课堂作业
练习十七第8、9题
⑧有一块*行四边形的菜地,底是27.6米,高是15米,每*方米收油菜6千克。这块地收多少千克油菜?
⑨有一块*行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?*均每公顷收小麦多少公顷?
板书设计:
*行四边形面积的计算
*行四边形的面积教案6
教材分析
本节课是在学生已经掌握*行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历*行四边形面积计算公式的推导过程,理解*行四边形的面积计算公式,为今后学习三角形、梯形等*面图形面积计算公式奠定基础。
教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较*行四边形和长方形的面积大小,再通过割补法,将*行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。
教学目标
1.探索*行四边形的面积公式,掌握并能正确运用公式解决实际问题。
2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。
3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。
根据目标的定位,我将“掌握*行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历*行四边形面积公式的探究过程”
教学方法
《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。
教学过程
教学环节
教学活动
设计意图
一、创设情境,引入新知
二、动手实践、探索新知
三、尝试练习,提升能力
四、课堂小结,梳理提高
以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形
(一)提出猜想
【提问】*行四边形的面积可能等于什么?
受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)
(二)动手验证
(课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。
1.多数学生会选用数格法,得到两个图形面积相等。
【追问】如果让你测量花坛的面积,你也用数格法吗?
【询问】我们能不能把*行四边形转化成我们熟悉的图形,再计算它的面积呢?
再次验证,并提出活动要求
(1) 你把*行四边形转化成什么图形?
(2) 什么变了,什么没变?
(3) *行四边形的面积怎么算?
2.交流反馈(一个演示,一个讲解)
【提问】看懂这种方法吗?有谁的和他不同?
(三)动眼观察
【提问】这两种方法有什么共同之处?
学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。
【追问】什么变了,什么没变?
学生发现,形状变了,面积没有变。因为*行四边形的底就相当于长方形的长,*行四边形的高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到*行四边形的面积等于底乘高。
(小组内、同桌间说一说变化的过程,加深对公式的理解)
(四)自学课本
引导学生自学课本,用字母表示公式。
S=ah(用S表示*行四边形的面积,用a表示*行四边形的底,h表示*行四边形的高)
【追问】要求*行四边形的面积,必须知道什么?
(一)基本技能训练
(1) 计算*行四边形的面积
(2) 蓝色线这条高的长度
(二)解决实际问题
快乐公园由三个高都是16m的*行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)
(三)提升思维能力
1.在方格纸上画一个面积是24*方厘米的*行四边形
2.如果这个*行四边形的底是4厘米,那么能画出几种?
这节课你学习了什么,有哪些收获?
教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。
感受数格法不受用,从而激发起探究欲望。
本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历*行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。
打破学生思维定势,感受高和底的对应。
发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。
通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。
*行四边形的面积教案7
教材分析
1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解*行四边形面积的计算公式,并了解*行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。
2、教材分析: 《*行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握*行四边形的特征,会画*行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把*行四边形转化成长方形之后,*行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
学情分析
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。
教学目标
(1)使学生通过探索理解和掌握*行四边形的面积公式,会计算*行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点和难点
教学重点:使学生通过探索、理解和掌握*行四边形的面积、计算公式、会计算*行四边形的面积。
教学难点:通过学生动手操作,用割补的方法把一个*行四边形转化为一个长方形,找出两个图形间的联系,推导出*行四边形的面积公式。
教学过程
一、情感交流
二、探究新知
1、旧知铺垫
(1)、说出*面图形名称并对它们进行分类。
(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)
设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。
2、 导入新课
3、 探究*行四边形面积计算方法。
(1)、在方子格中数出长方形的面积。
(2)、在方子格中数出*行四边形的面积(不满一格的按半格计算)。要求学生说出*行四边形对应的底和高。
(3)、通过观察表格,试着猜测*行四边形的面积计算方法。
(4)、共同探讨如何计算*行四边形的面积。
①出示*行四边形,引导学生明确其底和高。
②学生在学具上标明其底并画出对应的高。
③讨论:能否把*行四边形转化为已学过的*面图形再计算(保证面积不会发生变化)
④小组交流如何操作的。(割补法)
⑤学生代表汇报各组的操作方法以及得到的结论。
⑥幻灯片演示割补的过程。
⑦引导学生归纳*行四边形面积计算公式。(让学生明确算*行四边形面积的必须条件)
4、 课堂小练笔。
设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。
三、课堂练习
四、小结本课
五、课堂作业
板书设计
*行四边形 面积 = 底 × 高
长方形 面积 = 长 × 宽
S表示*行四边形的面积 a表示底 h表示高
S=a×h s=a.h S=ah
*行四边形的面积教案8
教学内容:
义务教育课程标准实验教科书数学人教版五年级上册第五单元《*行四边形的面积》第一课时79~81页。
教学目标:
1、使学生通过探索理解和掌握*行四边形的面积公式,会计算*行四边形的面积。
2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。
3、培养学生学习数学的兴趣及积极参与、团结合作的,渗透品德教育。
教学重点:探究*行四边形的面积计算公式,会计算*行四边形的面积。
教学难点:*行四边形面积公式的推导过程。
教具准备:多媒体课件、剪刀、*行四边形
教学过程:
一、情景引入,激趣导课
建国60年来,我们的生活水*越来越好,李明家和张海家不单在普罗旺斯小区买了新房子,还买了私家车,他们不仅是物质生活水*提高了,文明也提高了。这不他们又在为两个停车位而互相礼让着,都想把面积大的让给对方。你有什么办法知道这两个停车位的面积哪个大吗?
导入新课,揭示图形板书课题。
二、动手操作,探究新知
1、复习:复习*行四边形的底和高。
2、归纳意见,提出验证
学生利用课前准备好的*行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找*行四边形面积的计算方法。
3、学生汇报结果,展示操作过程
小组的代表来展示各组的操作方法。
4、演示过程,强化结果
多媒体演示,再来回顾一遍剪拼的过程。并适时提问:在转化的过程中,什么发生了变化?而什么没有变?
5、填空、归纳公式
根据刚才的操作过程,完成填空题,并归纳板书公式。
把一个*行四边形转化成长方形,这个长方形的长相当于*行四边形的(),长方形的宽相当于*行四边形的(),长方形的面积和*行四边形的面积(),因为长方形的面积=(),所以*行四边形的面积=()。
6、提问质疑
学生阅读课本81页的内容,质疑。
三、分层练习,内化新知
1、用公式分别算一算两个停车位的面积。
2、计算相对应的底和高的*行四边形花圃面积。
3、计算*行四边形牌两面涂漆的面积。
4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36*方米的草坪,你有几种设计?请你画出图形,并标出有关数据。
四:课堂。
今天我们学习了什么?通过学习,你有那些新的收获呢?
板书设计:
*行四边形的面积
长方形的面积=长×宽
(转化)
*行四边形的面积=底×高
S=a×h
*行四边形的面积教案9
教学目标设计:
1、激发主动探索数学问题的兴趣,经历*行四边形面积计算公式的推导过程,会运用公式求*行四边形的面积。
2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。
3、培养初步的推理能力和合作意识,以及解决实际问题的能力。
教学重点:探究*行四边形的面积公式
教学难点:理解*行四边形的面积计算公式的推导过程
教学过程设计:
一、创设情境,激发矛盾
拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽
教师捏住两角轻微拉动长方形框架,使它稍微变形成一个*行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:*行四边形面积=底边长×邻边长
学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为*行四边形的面积等于底边长×邻边长。
教师继续拉动*行四边形框架,使变形后的*行四边形越来越扁,到最后拉成一个很扁的*行四边形,提问:这些*行四边形的面积也等于底
边长×邻边长吗?
今天这节课我们就来研究“*行四边形的面积”。教师板书课题。
学情预设:随着教师继续拉动的*行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知*衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决*行四边形面积是多少问题?问题出在哪里呢?
二、另辟蹊径,探究新知
1、寻找根源,另辟蹊径
教师边演示长方形渐变*行四边形的过程,边引导学生思考:*行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?
引导学生思考:原来是*行四边形的面积变得越来越小了,那*行四边形的面积到底与什么有关呢?该怎样来求*行四边形的面积呢?
学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了*行四边形在越拉越扁,*行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?
2、适时引导,自主探索
教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把*行四边形转化成长方形来求面积呢?
(1)学生操作
学生动手实践,寻求方法。
学情预设:学生可能会有三种方法出现。
第一种是沿着*行四边形的顶点做的高剪开,通过*移,拼出长方形。 第二种是沿着*行四边形中间任意一高剪开。
第三种是沿*行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。
(2)观察比较
刚才同学们把*行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?
(3)课件演示
是不是任意一个*行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。
3、公式推导,形成模型
既然我们可以把一个*行四边形转化成一个长方形,那么转化前的*行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出*行四边形的面积怎么计算呢?
先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。
A、拼成的长方形和原来的*行四边形比,什么变了?什么没有改变?
B、拼成的长方形的长和宽与原来的*行四边形的底和高有什么关系?
C、你能根据长方形面积计算公式推导出*行四边形的面积计算公式吗?)
学情预设:学生通过讨论很快就能得出拼成的长方形和原来的*行四边形之间的关系,并据此推导出*行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个*行四边形转化成为一个长方形,它的面积与原来的*行四边形的面积相等。这个长方形的长与*行四边形的底相等,这个长方形的宽与*行四边形的高相等,因为长方形的面积等于长乘宽,所以*行四边形的面积等于底乘高。”并将公式板书如下:
长方形的面积 = 长 × 宽
*行四边形的面积 = 底 × 高
4、变化对比,加深理解
引导学生比较前后两种变化情况,思考:第一次的长方形变成*行四边形与第二次的*行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明*行四边形的面积计算方法的来源呢?为什么?
5、自学字母公式,体会作用
请同学们打开课本第81页,告诉老师,如果用字母表示*行四边形的
面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?
三、实践应用
1、出示课本第82页题目,一个*行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)
2、看图口述*行四边形的面积。
3分米 2.5厘米
3、这个*行四边形的面积你会求吗?你是怎样想的?
4、分别计算图中每个*行四边形的面积,你发现了什么?(单位:厘米)这样的*行四边形还能再画多少个?
*行四边形的面积教案10
教学内容:
人教版五年级上册第87—88页
教学目标:
1、掌握*行四边形的面积计算公式,并运用*行四边形的面积计算公式解决实际问题。
2、通过数、剪、拼等动手操作活动,探索*行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
教学重点:
掌握*行四边形的面积计算公式,能运用公式解决实际问题。
教学难点:
理解*行四边形面积计算公式的推导方法与过程。
教学准备:
*行四边形、学习单等。
教学过程:
课前布置预习第87——88页内容,完成预习单。
一、创设情境,导入新课。
1、课前交流与小故事
师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢?
生紧张,激动……
师:同学们,你们知道曹冲称象的故事吗?谁来说一说?
生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。
师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。
师:同学们,看老师手上拿着的是什么图形呢?
生:长方形
师:对。长方形,那它的面积是指哪一部分呢?请一名学生上来指一指、画一画。它的面积计算公式呢?
生:表面的大小,面积计算公式是长乘宽。
师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢?
生:*行四边形
师:*行四边形的面积怎么计算呢?今天我们就一起来学习探究*行四边形的面积。(板书:*行四边形的面积)
*行四边形的面积教案11
目标:
1.在理解的基础上掌握*行四边形的面积计算公式,能正确地计算*行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
教学重点:理解并掌握*行四边形面积的计算公式,会利用公式正确计算*行四边形的面积。
教学难点:理解*行四边形面积公式的推倒过程,会利用公式正确计算*行四边形的面积。
教学准备:多媒体、*行四边形纸片. 剪刀、三角尺
一、创设情境
同学们,你们喜欢听故事吗?(喜欢)。今天老师说的故事发生在动物村。这是小熊家,它的菜地是这块;这是小兔家,它的菜地是这块。它们觉得这样跑来跑去干活很不方便,于是,小熊就说:“我们俩换块菜地怎么样”?小兔说:“好啊,可我不知道这两块地的面积是否相等?”同学们,你们能帮小兔解决这个问题吗?
师:你们准备怎样解决呢?
生:分别算出长方形和*行四边形的面积就行了。
师:谁来说怎样计算长方形的面积?
生:长方形的面积等于长乘宽。
师:怎样列式?(10×6=60*方米)
师:求长方形的面积有公式很方便,那你会算*行四边形的面积吗?
生:-------
师:那么今天我们就来研究怎样求*行四边形的面积.(板书课题:*行四边形的面积)
二、探究新知
1、学生尝试解决,
师:同学们,仔细观察这块*行四边形的菜地,你能想办法把它的面积算出来吗?老师相信你们一定行。
学生活动,独立尝试解决。
教师巡视,
2、反馈学生尝试计算结果。
师:同学们有结果了吗?
学生汇报结果。
师:求一个图形的面积出现了这么多的结果,可能吗?(不可能)
到底哪个结果正确呢?让我们一起来验证一下。请同学们拿出*行四边形纸,通过剪、拼的方法把这个*行四边形转化成我们已学过的图形。老师有一个小小的提示:应该沿哪里剪才能把它拼成我们已学过的图形。同桌合作。
3、学生汇报验证过程。
师:请你上台把这过程演示一遍。
学生演示。
师:我想问一下,你这一剪是随便剪的吗?
生:不是,是沿高剪的。
师:哦,这位同学是这样剪的。
师:不错,谁还有不同的剪法?
学生汇报。
师:大家听明白了吗?这两个同学都是沿着*行四边形的一条高剪开,将*行四边形转化成一个长方形。看来,沿着*行四边形的任意一条高剪开,都可以通过*移把*行四边形转化成一个长方形。
师:现在,我请一位同学用老师的教具把*行四边形转化的过程再演示一遍。谁来上台演示?
师:大家边看边想:转化后的长方形和原来的*行四边形比,什么变了?什么不变?
生:形状变了,面积没有变。
师:面积没有变,也就是――(转化后长方形的面积与原来的*行四边形的面积相等。)
师:非常正确!
师:谢谢你开了个好头。接下来,请小组讨论:转化后,长方形的长和宽分别与原来的*行四边形的底和高有什么关系?
师演示教具。
生:转化后的长方形,长与原来的*行四边形的底相等,宽与原来*行四边形的高相等。
师:说得真好。那现在*行四边形的面积你们会算了吗?
生:*行四边形的面积等于底乘高。
师:不错。如果用S表示*行四边形的面积,用a 表示底,用h表示高,*行四边形的面积公式用字母怎样表示呢?
学生说完,师完成板书:长方形的面积=长×宽
*行四边形的面积=底×高
用字母表示:S=a×h=ah
师:同学们真不简单,经过努力你们终于发现并验证了*行四边形面积计算公式,老师为你们感到骄傲
请同学们打开数学书81页,把*行四边形的面积公式补充完整。这个面积公式适用于所有的*行四边形。
师:刚才这三位同学都表现得很好。接下来,我再请一位同学来说说*行四边形的面积是怎样推导出来的,(出示课件)你会填吗?
4、解决问题
师:通过同学们的努力,我们已经推导出了*行四边形面积的计算公式,我们再来看看原来同学们写的这几个结果哪一个才是正确的?那现在你们能为小熊、小兔俩解决问题了吗?
生:能,小熊和小兔的菜地可以交换,因为这两块地的面积一样大。
师:谢谢你们为小熊和小兔解决了交换菜地的问题。
师:解决了小熊和小兔的问题,接下来老师要同学们算一算我们学校花坛的面积。
出示例1*行四边形花坛的底是6m,高是4m,它的面积是多少?
学生尝试练习,生上台板演。
师:通过这道题,请大家想一想,要求*行四边形的面积,我们必须知道哪些条件?
生:底和高。
师:不错,需要知道两个条件,就是底和高。只要知道它的一组底和高就能求面积了。
三、巩固练习
1、计算下列图形的面积。
师:谁来说第1个图形的面积怎么求?第2个图形呢?刚才这两个图形的面积真是太容易算了,我们来一个稍为难点的图形,这个图形有点不一样。同学们有没有信心算出它的面积?(有)请同学们写到课堂作业上。
生上台板演。
师:同学们,算完了吗?我们来看看这位同学做对了没有?
师:今后我们在求*行四边形的面积时,要看清楚它的底和高一定要相对应。不能张冠李戴。
师:同学们,如果我给出底是12厘米相对应的高,你们还能用另外一种方法算出它的面积吗?(能)谁来说?
2、课本82页第2题。
师:接下来,请同学们做课本82页的第2题。你能想办法求出它的面积吗?你打算怎么做? 女生算第1个图形,男生算第2个图形。我们比一比
学生上台展示。,
3、考考你。
师:比完了,接下来老师又要出题目考你们了。
4、小小设计师。
师:同学们,想不想当设计师。如果让你设计一个黑板报栏目,要求面积是24*方分米,那么底和高各是多少分米?(底和高都是整数)
四、小结
师:今天这节课的知识你们是怎样学会的呢?
师:今天同学们学得很好。好在哪里呢?同学们不是等待,而是动脑筋,想办法。敢于把新问题转化成已有的知识来解决。
*行四边形的面积教案12
教学目标
1、巩固*行四边形的面积计算公式,能比较熟练地运用*行四边形面积的计算公式解答有关应用题。
2、养成良好的审题习惯。
教学重点
运用所学知识解答有关*行四边形面积的应用题。
教学难点
运用所学知识解答有关*行四边形面积的应用题。
教学准备
三角板,直尺等。
教学过程
一、基本练习
1.口算。
4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49
530+270 3.5×0.2 542-98 6÷12
2.*行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各*行四边形的面积
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块*行四边形的麦地底长250米,高是78米,它的面积是多少*方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
⑶如果问题改为:“一共可收小麦58500千克,*均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
三、巩固练习
1.测量右图中*行四边形的一条底边和它对应的高,
并计算它们的面积。
2.分别计算图中每个*行四边形的面积,
你发现了什么?(单位:㎝)
四、总结全课
通过本节课的练习,你有什么收获?你还有哪些疑难问题?
五、作业
优化作业。
*行四边形的面积教案13
教学内容:
教科书第79~81页
教学目标:
1.使学生通过探索,理解和掌握*行四边形的面积计算公式,会计算*行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学过程:
一、导入
1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。
2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究*行四边形面积的计算。
板书课题:*行四边形的面积
二、*行四边形面积计算
1.用数方格的方法计算面积。
(1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个*行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到*行四边形与长方形的底与长、高与宽及面积分别相等;这个*行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导*行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个*行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,*行四边形的面积是不是也有其他计算方法呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:通过数方格我们已经发现这个*行四边形的面积等于底乘高,是不是所有的*行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个*行四边形变成一个长方形计算呢?请同学们试一试。
学生用课前准备的*行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—*移—拼的过程。(如教材第81页的图示)
(3)我们已经把一个*行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的*行四边形,你发现了什么?
小组讨论。可以出示讨论题:
①拼出的长方形和原来的*行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的*行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出*行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个*行四边形转化成为一个长方形,它的面积与原来的*行四边形面积相等。
这个长方形的长与*行四边形的底相等,
这个长方形的宽与*行四边形的高相等,
因为 长方形的面积=长×宽,
所以 *行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把*行四边形的面积计算公式用字母表示出来。
三、巩固和应用
1.出示例1。读题并理解题意。
学生试做,交流作法和结果。
2.讨论:下面两个*行四边形的面积相等吗?为什么?
*行四边形的面积教案14
教学内容:第70-73页练习十七第1-3题
教学要求:
1、理解*行四边形面积计算公式,能正确地计算*行四边形面积;
2、在割补、观察与比较中,初步感知与学习转化、变化的数学思想方法,并发展学生的空间观念。
教学重点:运用面积公式解答实际问题。
教具、学具准备:教师准备微机及多边形、*行四边形课件两组、边可活动的*行四边形框架。学生准备任意大小(画有高)的*行四边形纸片、剪刀。
教学过程:
一、质疑导入
1、指出下面*行四边形的底和高各是几厘米?
2、向学生出示可拉动的长方形框架,问:要求这个长方形的面积,怎么办?(学生回答,教师板书:长方形面积=长×宽)
3、分别用手拉长方形相对的一对角,使其变形为*行四边形后,问:原来的*行四边形变成了什么图形?它的面积怎样求呢?(揭示课题:*行四边形面积计算)
二、引导探究
(一)、初探
1、微机出示第70页左图,让学生说出*行四边形底和高各是多少厘米,然后数出它的面积。
2、出示第70页右图,让学生说出长方形长和宽各是多少厘米,然后算出它的面积。
3、让学生观察、比较:
(1)两图形的面积都是18*方厘米,那么*行四边形的底和高与长方形的长和宽有什么关系?
(2)从上面的比较中你想到什么?
(二)、深究
1、做导引题下图中阴影部分面积是多少?
微机演示剪拼过程后让学生回答:
(1)剪拼前后,图形形状变了没有?面积改变没有?
(2)阴影部分面积是多少?
(3)解这道题你想到什么?
2、剪拼
(1)刚才用剪拼的方法解决了一个求面积的问题,你能不能用剪拼的方法,把*行四边形转化成学过的图形,求出它的面积呢?拿出*行四边形纸片,剪一剪,拼一拼,试试怎么样。
(2)请剪拼方法不同的学生展示剪拼结果,说一说是怎样想的。根据学生的回答,教师演示。
3、引导学生分析得出:沿着*行四边形底边上的任意一条高,都可以把*行四边形剪拼成一个长方形。
4、归纳
(1)讨论:
A*行四边形剪拼成长方形后,两种图形的面积是否改变了?
B剪拼成的长方形的长和宽分别与原*行四边形什么线段长度相同?
C剪拼成上面三种情况的图形后,哪些面积可以直接求出来?怎样算?
(2)归纳、总结,推导公式。
A因为长方形面积=长×宽
所以*行四边形面积=底×高
B先启发学生用字母分别表示三个量,写出字母公式,再告诉学生一般的字母表示公式:S=ah
C引导学生分析公式,使学生知道,要求*行四边形面积必须知道两个条件,*行四边形的底和高。
三、深化认识
1、验证公式:
让学生用面积公式算出课本第70页*行四边形面积,看结果与数方格法得出的结果是否一样。
2、应用公式:
(1)引导学生解课本第72页例
(2)完成课本第72页做一做1
3、求下图表示的*行四边形的面积,列式为3×2.7,对吗?为什么?
四、全课总结
五、课堂作业
1、第72页做一做2
2、练习十七1
3、练习十七2、3
板书设计:
*行四边形的面积
*行四边形的面积教案15
教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨*行四边形面积公式,并能用字母表示,会用公式计算*行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索*行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感
教学重点:
让学生充分利用手中的学具,在动手操作推导*行四边形面积公式的过程中,理解并掌握*行四边形面积的计算方法,能正确计算*行四边形的面积。
教学难点:
让学生在推导和验证*行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教学准备:
*行四边形卡片、剪刀、三角板
教学过程:
一、课前复习,回顾旧知
1、 长方形面积公式是什么?(勾起学生对已有知识的回顾,为学习*行四边形面积公式做铺垫)
2、 生:长方形面积=长×宽。
二、提出问题,导入新课
1、出示主题图:(看课本第86页的图)
(1)、发现了哪些图形?你会求哪些图形的面积?
(2)、故事引入
学校门前有两个大花坛,左边的是长方形的,右边的是*行四边形的。现在准备把花坛里面的草换成美丽的蝴蝶花,这个分别交给五(1)班和五(2)班负责。这时同学们争论开了,有的同学说长方形的面积大,有的说*行四边形的面积大,又有的同学说“还不是一样大嘛?”同学们,今天就让我们来帮帮他们判断一下哪个花坛的面积大。
师:我把花坛缩小成我手上的图形(出示缩小的两个图形,让学生比较)
比较方法:
1、叠起来比;(比不了,形状不一样)
2、数方格比。
师:*行四边形的面积还有其它数法吗?(引出转化成长方形的方法)在实际问题上,这种方法行吗?不行,麻烦而且不实际,能不能像计算长方形面积那样计算出来呢?今天,就让我们来探讨*行四边形的面积的计算方法。(板书课题)
三、探索发现、推导公式
1、猜想:*行四边形的面积跟什么有关系呢?(板书:底和高;两条边)
2、验证:科学是从猜想到验证的一个过程,现在就让我们用事实来说话吧。
课本中的同学们也忙开了,让我们来看看他们在干什么?打开88页,看看课本上半页的图。他们在干什么呢?(把*行四边形剪拼成长方形)
现在,同学们也用剪拼的办法,把*行四边形转化成长方形,每个学习小组长的手上都有一个*行四边形,每个小组的同学合作,剪一剪,拼一拼,看看那组的同学合作最好,先来看看我们的导学提纲。
小组根据导学提纲进行合作学习
(1)怎样把*行四边形纸片剪一刀,拼成一个长方形呢?(剪前,小组要先讨论出怎样剪,拼成的才一定是长方形。)
(2)讨论:*行四边形转化成长方形后面积变了吗?
(3)讨论:转化成的长方形的长和*行四边形的底是否相等?
(4)讨论:转化成的长方形的宽和*行四边形的高是否相等?
3、学生操作验证
师:这个剪拼的任务就交给你们了。
4、交流汇报
(1)生1:先在*行四边形上画一条高,沿着高剪开,把*行四边形分成了一个三角形,一个梯形,然后把三角形向右*移,拼成了长方形。
生2:在*行四边形上画一条高,然后沿高剪开,分成了两个梯形,然后把左边的梯形向右*移,拼成了长方形。
师:这样的变化过程在数学上叫做“转化”,*行四边形转化成长方形。
(2)面积没变,只是形状变了。
(3)长方形的长和*行四边形的底相等。
(4)长方形的宽和*行四边形的高相等。
(5)*行四边形的面积怎样算?
5、集体推导
齐看演示剪拼的过程,学生自己口头作答,再齐读。(老师边讲解边板书)
一个*行四边形沿着任意一条高剪开,都可以拼成一个(长方形),它的面积与*行四边形的面积(相等),这个长方形的长与*行四边形的(底)相等,这个长方形的宽与*行四边形的(高)相等,因为长方形的面积=(长 X 宽),所以*行四边形的面积=(底 X 高)。
板书:长方形的面积 = 长 X 宽
↓ ↓ ↓
*行四边形的面积 = 底 X 高
6、字母表示公式
师:如果用字母S表示*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形的面积计算公式可以写成S=a×h(师板书)(在课本划出公式,读公式)
7、回到学生们的猜想,*行四边形的面积是跟底和高有关系。我们也可以用计算的方法来求出*行四边形的面积了。
师:同学们多了不起啊,自己实践得出了真理,科学就是这样一步步的向前推进的。
8、运用公式:学习88页例1
师:让我们回到学校门前的花坛吧。
出示题目,学生读题,学生口答,老师板书过程。
9、回到同学们的争论,两个花坛的面积是一样大的,科学实践还是解决争论的最好办法。
三、巩固拓展
1、课本89:第1题。(学生在练习本中解答)
2、口答:下面的*行四边形的面积是多少*方厘米?
3、选择题:(区分对应的底和高)
4、实际应用:课本89:第4题第1个图(先量出底和高,再计算) 求楼梯扶手的面积。
5、口答
(1)*行四边形的底不变,高扩大2倍,面积就( )。
(2)*行四边形的高不变,底缩小2倍,面积就( )。
(3)*行四边形的底扩大2倍,高也扩大2倍,面积( )。
四、总结全课,提高认识
1、通过今天的学习,你有那些收获?还有那些遗憾的地方?
2、今天,我们用转化割补法学习了*行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学以致用。
板书设计:
*行四边形的面积
长方形的面积 = 长×宽
↓ ↓ ↓
*行四边形的面积= 底×高
S = a×h
*行四边形的面积教案扩展阅读
*行四边形的面积教案(扩展1)
——*行四边形的面积说课稿5篇
*行四边形的面积说课稿1
一、说教材
《*行四边形的面积》是小学数学五年级上册第五单元的内容。它是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式奠定良好的基础。因此这节课的内容在整个教材体系中起到了承上启下的作用。
二、说学生
本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解*面图形之间的变换关系,发展空间观念。
三、说教学目标及重难点
根据新课标的要求及教材的特点,充分考虑到五年级学生的思维水*,我确立如下三维教学目标:
1、知识目标:掌握*行四边形面积的计算公式,能正确计算*行四边形的面积。
2、能力目标:理解推导*行四边形面积计算公式的过程,培养学生抽象概括的能力。
3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。
教学重点:能应用公式计算*行四边形的面积。
教学难点:理解*行四边形面积的推导过程,并能运用公式解决实际问题。
四、说教学方法
本节课,我将采用“自主探究、合作交流”的教学方式。通过创设情境,课件演示和实践操作,了解求*行四边形的面积与什么有关系,再让学生通过动手剪拼,推导出*行四边形的面积计算公式,直观突破了难点。这样大大激发了学生参与学习的积极性。与此同时,我还组织学生认真操作、观察、分析和讨论,来解决生活中的实际问题。
五、说教具与学具准备
教具:多媒体课件、*行四边形纸、剪刀、三角板。
学具:学生每人一个任意大小的*行四边形纸片剪刀
六、说教学过程
为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,我把教学过程分为以下五个教学环节:
第一环节:创设情境、激趣导入。
通过创设情境:小兔乐乐想从两块草地中,找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,同学们能帮助小兔解决吗?接着引导学生看图一是什么图形?该如何计算它的面积呢?学生一边集体回答一边(板书长方形的面积计算公式)然后提问图二是什么图形?该怎么求它的面积呢?学生利用以前的知识不能计算出*行四边形草地的面积。从而激发了学生积极探求知识奥秘的欲望,使课堂教学充满活力。
第二环节:动手实践,多维探究。
1.我首先提出“怎样比较长方形草地和*行四边形草地的面积的大小呢?”这个问题引发学生小组讨论。小组学习中,学生不受任何束缚,开动脑筋,各自想尽一切办法,这样不但达到大家参与,共同提高的学习效果,而且激活了学生的思维,激发了学生的创新意识,培养他们的自主合作、探究的精神。汇报交流时,找准切入点,突破难点。利用从小组汇报中得来的信息,引导学生确定办法的可行性。学生想出了很多办法,如:数方格法、重叠卡片对比法、剪割拼补法等等。不论哪一种方法都是宝贵的,因为,这不是教师强加给他们的,而是学生自己研究讨论的结果,是课堂中生成的收获。引导学生分析、验证是发展学生思维的重要方法。所以,在学生汇报出多种答案时,我组织学生分组实践各种办法,并要求说明实践过程,要合情合理,学生在认真、细致的操作中认识到长方形与*行四边形之间的联系。
2.其次(课件出示数方格图)要求认真观察,然后填写表格,最后讨论总结出:长方形的长和*行四边形的底相等,长方形的宽和*行四边形的高相等,并得出两个图形面积相同的答案。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导*行四边面积计算公式做好充分的准备。
第三环节:抓住重点环节,深入推导梳理
(1)实验操作
学生小组合作动手操作把*行四边形转化为长方形,并选取小组代表把拼剪的图形张贴在黑板上。学生操作方法如有误,可用课件演示正确方法,使学生学会*移图形的方法。这一环节的安排,既锻炼了学生的动手能力,也发展了学生的空间概念,更为下一步探究*行四边形的面积公式积累了感性经验,同时也培养了学生的协作精神。
(2)合作探究
通过感性经验的积累和实践的结果,讨论:
a、是不是任何一个*行四边形都能剪拼成长方形?*行四边形转化成长方形后它的面积有没有变化?
b、拼成长方形的长与原来*行四边形的底有什么关系?
c、拼成长方形的宽与原来*行四边形的高有什么关系?
小组通过讨论达成共识,推导出*行四边形面积公式。
(课件展示板书)*行四边形的面积=底×高
然后指出:如果*行四边形的面积用S表示,底用a表示,高用h表示,那么*行四边形的计算公式还可以写成什么形式,让学生抢答,教师板书,这样又提高了学生用字母表示公式的能力。
小结:整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,推导出*行四边形面积计算公式,突破了难点,解决了关键,培养发展了学生能力。
*行四边形的面积说课稿2
一、说教材:
1、教材的地位与作用
*行四边行面积的计算是苏教版第九册第二单元第一节。这节课的内容是在初步掌握长方形的面积计算及*行四边的基本特征的基础上进行教学的。*行四边的面积是以长方形的面积计算为基础的,把*行四边转化为长方形来计算面积。通过操作、观察、比较、使学生理解,并在此基础上掌握*行四边的面积的计算公式,并能正确计算*行四边的面积。这样可以发展学生的空间观念,渗透事物间相互联系、相互转化的辨证观念,培养学生的演绎推理,逻辑思维及解决问题的能力。同时为以后学习三角形、梯形、组合图形的面积计算打下基础。
2、教学目标
(1)知识目标:使学生在理解的基础上掌握*行四边的面积计算公式,能正确地计算*行四边行的面积。
(2)能力目标:通过操作、观察、比较,发展学生的空间观念,使学生初步认识转化的思考方法在研究*行四边时的应用,培养学生的分析、综合、抽象和运用转化的方法解决实际问题的能力。
(3)德育目标:渗透事物间是相互联系的和实践第一的辨证唯物主义思想,培养爱科学、学科学、用科学,加强学生动手操作能力。
(4)情感和态度:经历猜测,实验验证,作出结论的过程,增强肯于动脑又实事求是的科学精神。
3、教学重点与难点
因为计算物体的面积在曰常生活和生产中有着十分广泛的应用,所以本节的重点是*行四边形面积计算公式的推导过程,以及学生能正确熟练地计算*行四边形的面积。教学的难点是如何运用迁移的思想把*行四边形转化成长方形。
二、说教法:
根据教材以及四年级学生的特点,我在教学中采用以下教学方法:
(1)直观演示法:通过多媒体课件演示,使学生对所学知识获得丰富的感性认识,有利于激发学生的学习兴趣,集中注意力,培养和发展学生的观察能力。
(2)情境教学法:让每个学生都亲自动手制作、演示*行四边形转化成长方形的过程,创设良好的课堂氛围,使学生积极参与到教学活动中,调动学生的学习积极性,变“要我学”为“我要学”。
(3)实践探究法:引导学生运用转化的方法,启发学生主动探索规律。
(4)渗透迁移的思想,把新知转化成旧知解决。
三、说学法:
“教,是为了不教”,在课堂教学中,我们应重视学生学习的过程,加强学生动手操作,手脑并用;引导学生运用转化的方法,启发学生探索规律;注重对公式产生的全过程进行探求;让学生在提出猜想、验证猜想、应用猜想等一环扣一环的情境中,学会观察,学会表述,学会思维。
教学过程:
(一)形象导入,唤起感知
课件显示(方格纸上的*行四边形) 方格纸上画的是什么图形?其有哪些特征?谁能利用三角板作出*行四边形的高?让学生在自己准备的*行四边形上作高,并强调直角三角板的一条边与底边重合,另一条通过顶点向底边作垂线。为新课的教学作好准备。
(二)实验操作,引导探究
1:观察数格,提出猜想
课件显示(P42的图形)谁能利用以前学过的方法计算*行四边形的面积?强调*行四边形在方格纸上不满格的,该怎么数?通过剪拼,渗透转化的思想,为后面把*行四边形转化为长方形或正方形作铺垫。那么谁来数一数长方形的面积,并比较长方形的长与*行四边形的底,长方形的宽与*行四边形的高,启发学生说出底和长,高和宽分别相等,两者的面积也相等。如果不用数格,如果*行四边形的面积很大你能有更好的方法求出*行四边形的面积呢?(提出猜想)
2:实验操作,验证猜想
在实际的生活中并不是所有的*行四边形都能用数格得到的,因此我们利用转化的思想,通过学生的操作、探索,把*行四边形转化为已学过的长方形,从而把计算*行四边形的面积转化为计算长方形的面积。
让学生拿出准备好的*行四边形进行剪拼:
(1)先沿着*行四边形的高剪下左边的直角三角形。
(2)左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
(4)让学生把自已沿着高剪下的直角三角形按以上步骤把*行四边形转化成长方形。
3:观察比较,推导公式
课件显示(*行四边形转化成长方形的过程)并在让学生在剪拼成的长方形边上放一个原来的*行四边形,引导学生结合自已转化的图形仔细观察、比较。
(1)这个由*行四边形转化成的长方形面积与原来的*行四边形的面积比较,有没有变化?为什么?
(2)这个长方形的长与*行四边形的底有什么样的关系?高有什么样的关系?
(3)这个长方形的面积怎样求?转化的*行四边形的面积怎样求?
(4)让学生明确:任意一个*行四边形都可以转化为一个长方形,它的面积和原来的*行四边形的面积相等,它的长、宽分别和原来的*行四边形的底、高相等。
沟通关系 因为 长方形的面积=长×宽
所以 *行四边形的面积=底×高
(以上的过程,遵循了学生的认知规律,按“提出猜想(设疑激趣)——验证猜想(转化探索)——推导公式(分析应用)的过程,遵循了直观——抽象——应用的教学原则,充分展示教师的主导作用和学生的主体作用,使学生主动参与,探索尝试,激发了其学习的积极性。)
(5)教学用字母表示*行四边形的面积公式
教师板书:s=a×h,告知s和h读音,并说明在含有字母的式子里,字母和字母中间乘号可以记作“· ”,写成a·h,也可以省略不写,所以*行四边形面积的计算公式可以写成s=a·h或s=ah
(三)、运用公式,解决问题
练习题的 设计由浅入深,循序渐进。
1、教学课本第44页例题。
指导读题后,引导学生思考:根据什么立式?得数应注意什么?然后让学生独立列式计算,教师巡回指导,集体订正时指名说出是根据什么列式的。
2、完成第44页做一做的题目
学生独立练习,教师巡视指导,共同订正。
完成本节课教学内容后,让学生看书,质疑问难,及时解决问题,巩固所学知识。
3、多层练习,内化新知。
为了适应面向全体学生和因材施教的需要,这节课设计了三个层次的练习。
(1)基础练习。完成练习九的第1、2、3题。(第1题,巩固新学的面积计算公式,三题底与高数值不同,图形中高的.位置各不相同,让学生明确底与高必须一一对应。第3题,要求学生会根据底来找高,或根据高来找底,并能正确作高,与引入复习相互应,使整堂课前后呼应,连贯一致)
(2)联系实际,补充练习。
(3)动手操作,发展练习:练习十七的第10题。
(这样的练习,可以让学生发散思维,培养学生的操作能力和创造能力,同时渗透变与不变、联系与发展的辩证思想。这样,针对性强,形式多样,难度适中的阶梯练习,使学生的学习由“理解”上升为“掌握”,难度适中的阶梯练习)
(四)归纳整理,全课总结。
教师启发学生归纳总结本课学习的内容,目的是强化重点,形成认知结构。
*行四边形的面积说课稿3
一、教材分析。
本节课是小学数学五年级上册第五单元“多边形的面积”的第一课时,它是在学生掌握了*行四边形的特征以及长方形、正方形面积计算的基础上进行的,是进一步学习三角形面积、梯形面积等知识的基础。教材利用主题图引入本单元的教学,先用数方格方法计算图形的面积,再通过割补实验,把一个*行四边形转化为一个与它面积相等的长方形,推导出新的图形面积计算公式,使学生明确面积计算公式的意义。这样的编排,注重从生活场景导入,突出了数学的价值,整个教材很适合自学。
二、学情分析:
虽说学生已经掌握了*行四边形的特征和长方形面积的计算方法,也已经有了“利用数方格推导长方形面积计算方法”的这一活动经验。可我发现:很多的同学已经淡忘了“数方格求面积”的这种方法。再加上小学生的空间想象力不够丰富,这都对*行四边形面积计算公式的推导造成一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、教学目标预设:
结合本节课所学知识特点和学生的思维特点现拟定如下目标:
1.使学生经历探索*行四边形面积计算公式的推导过程,掌握*行四边形的面积计算方法,能应用*行四边形的面积公式解决相应的实际问题。
2.培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3.培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
4.使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。
四、教学重点、难点剖析:
通过猜测DD验证来突破掌握*行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点*行四边形面积公式的推导。关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成*行四边形。
教学重点:探究并推导*行四边形面积的计算公式,并能正确运用。
教学难点:*行四边形面积公式的推导方法—转化思想渗透。
五、说教法、学法
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。
在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。
在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。
学法上坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
六、教学过程
为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学过程分为以下几个教学环节:
(一)巧设情境,铺垫导入
教师出示长方形框架,对长方形的知识进行复习。主要就是长方形的周长和面积,为本节课的学习做好铺垫。这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的? 复习后,把这个长方形的一组对角,向外这样拉,就变成了*行四边形。简单的操作背后有思考:这样一拉,形状变了,面积变了吗?
让学生质疑面积的变化,并进行大胆的猜测——你认为*行四边形的面积是怎样计算的?学生可能会猜测变形后它的面积没有变——*行四边形的面积等于相邻两条边的乘积。或者是已经改变了,那么是什么?
究竟学生这个猜想是否正确,下面我们一齐来验证一下就知道了。在这里渗透了数学很重要的一个思想,就是猜测——验证的过程。在这里我设计了两个环节来进行验证。
一种是请同学们用数方格的方法来算出这个*行四边形的面积,师把拉成的*行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。通过学生数一数,得出这个*行四边形的面积是32cm2,使学生明确拉成的*行四边形面积变少了,相邻两条边的乘积不能算出*行四边形的面积。拉成*行四边形的面积变小了。
看起来,用相邻的两条边相乘不能算出*行四边形的面积,那么,*行四边形的面积应该怎样计算呢?进入我们这节课的主题:就让我们一起来探讨*行四边形的面积计算吧。
(二)合作探索,迁移创造
探究*行四边形的面积公式是这节课的第二个验证过程。也是这节课的重难点所在。学生经历活动过程:
图形转换
一个*行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?可以转换成什么图形?让学生实践操作,同桌两人合作,想办法把*行四边形转化成长方形。要鼓励学生多角度思考问题,再通过合作交流,想出各种方法将*行四边形转化成长方形。在学生动手操作的过程中,可能有很多种剪拼方法,教师指导学生用最简单的方法进行剪拼,并把有代表性的作品张贴在黑板上。然后学生来展示他们的剪拼过程。汇报这样拼剪的原因。讲解过程中可提问:你怎么证明你剪切并*移成的图形就是长方形呢?从“高”剪起,剪下的部分向右*移,就组拼成长方形。
在这里让学生通过动手操作拓展了学生思维的空间,这样不仅强化*移转化方法在实际中的应用,也大大提高了学生运用已有知识解决实际问题的能力,注重了知识的获得过程。在这里教师可以用课件再演示一遍三种不同的转化过程。让学生更加明确转化思想。
*行四边形的面积说课稿4
一、说教材
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会*行四边形、三角形、梯形面积计算的任务。*行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,把*行四边形转化成为长方形,并分析长方形面积与*行四边形面积的关系,再从长方形的面积计算公式推出*行四边形的面积计算公式,使学生理解*行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
(一)教学目标:根据新课标要求及教材特点,充分考虑五年级学生思维水*,确立如下目标:
知识与能力:通过自主探索、动手实践推导出*行四边形面积计算公式,能正确求*行四边形的面积。
过程与方法:经历*行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养分析、综合、抽象、概括的能力。
情感态度价值观:感受数学与生活的联系,感受到数学知识的应用价值和探究知识的乐趣。
(二)教学重点:探究并推导*行四边形面积的计算公式,并能正确运用。
教学难点:通过转化,发现长方形和*行四边形之间的联系,从而推导出*行四边形面积计算公式。
关键点:通过实践—理论—实践来突破掌握*行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点*行四边形面积公式的推导。关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出*行四边形等积转化成长方形。
(三)教具、学具准备:多媒体课件
剪刀、4种不同的*行四边形、彩笔。为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。
二、学生分析:学生已经掌握了*行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对*行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、设计理念:《数学课程标准》指出:“由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”而《小学生个性与特长发展实验研究》这一课题旨在通过课堂教学这一主渠道激发学生的学习兴趣,张扬学生的个性,形成爱好,(转自数学 吧 )使学生掌握学习策略,并最终能够发展特长。因此,整节课我始终坚持构建和谐的课堂,注重营造民主和谐的教学气氛,尊重学生的真实想法,关注学生真实的思维世界,整个教学过程师生在*等、民主、和谐中进行真诚的“对话”和“互动”,形成了思想与情感的真正交流,做到了“以人为本”,这样师生彼此形成了一个学习共同体,整个教学过程变成了一种动态的、生动的、发展的富有个性化的创造过程。另外,《数学课程标准》中提出“自主探索”是重要的学习方式,因此我在本节课的设计中,是先让学生明确*行四边形的面积为什么与底和高有关系,再让学生明确到底有什么关系,这样,是在学生自己思维指向性基础上的探索,也就是让学生明确了“我要探索什么,我为什么探索”,避免了人为地提供探索的方向,真正经历了知识形成的过程。这样,学生的自主探索既有利于教学的合理进展,又有利于学生对知识的真正获得,同时还有利于学生思维的发展和创新精神的培养,做到了有效的探索。
四、说教法、学法
教法:
1、发展迁移原则:运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
2、学生为主体,教师为主导的教学原则:针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
3、反馈教学法:为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与*行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
学法:学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
五、说教学程序
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:
整个教学过程大致是这样一个教学流程:
1)通过“你发了哪些图形?你会计算它们的面积吗?”问题,巩固和加深了对已学过的图形的认识。再由解决“两个花坛哪个大?”这个实际的问题,让学生感受到学习数学知识的应用价值。
2)初步感知用数一数的方法求*行四边形的面积的局限性,从而激起学生进一步寻求简单方法求*行四边形的面积。
3)引导学生观察表中的数据,说说你发现了什么?由此你猜想到了什么?让学生大胆猜想。通过细心地观察、交流明确*行四边形的面积=底×高。然后再探索验证:*行四边形的面积=底×高,学生经历着比较、分析、动手操作、观察、合作、交流等一系列数学活动,体验着知识的形成过程,进而推导出*行四边形的面积计算公式,使学生在学会数学知识的同时,理解和经历了“转化”的数学思想方法。
4)进行综合性的练习,使学生体会“学以致用”。
5)最后让学生谈谈在本节课对自己最满意的地方,学生畅所欲言,在轻松愉快的氛围中结束本课。
(一)创设情景,揭示课题
1、比较两个图形的面积。让学生猜一猜。
2、想办法比较两个图形的面积。
3、长方形的面积会计算,*行四边形的面积怎样算。揭示课题。
(二)动手实践,探究归纳
1、尝试把*行四边形剪、拼成长方形
2、学生展示、交流
3、对比、总结、提炼
(三)分层训练,理解内化:本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题。
(四)总结评价,升华提高
师生共谈本节课的收获,引导孩子用转化的方法尝试解决三角形、梯形的面积
*行四边形的面积说课稿5
今天我说课的内容是人教版数学五年级上册第五单元《*行四边形的面积》。下面我将从教材、学情、教学目标、教法学法、教学过程和评价六个方面进行说课。
一、说教材
几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。而本课是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上进行教学的。本节课主要让学生初步运用转化的方法推导出*行四边形面积公式,在理解的基础上掌握公式。同时也为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节,更是承上启下的重要章节。
二、说学情
新课改下成长起来的五年级学生,善于独立思考,乐于合作交流,有较好的学习数学的能力。再加上他们已经掌握了*行四边形的特征和长方形面积的计算方法,这些都为本节课的学习奠定了坚实的基础。但是,让学生切实理解长方形与*行四边形之间的联系是一个难点,需要他们在探索活动中,循序渐进、由浅入深地进行操作与观察,从而进一步理解*面图形之间的变换关系,发展空间观念。
三、说教学目标
根据新课标的要求,基于对教材与学情的分析,我确定了如下教学目标:
1.知识与技能目标:使学生在理解的基础上掌握*行四边形面积的计算公式,能正确计算*行四边形面积。
2.过程与方法目标:经历*行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化和*移的思想,培养学生的分析,综合,抽象概括和动手解决实际问题的能力。
3.情感、态度与价值观目标:通过活动,激发学生的学习兴趣,使之感受到数学知识的应用价值和探究知识的乐趣,感受数学与生活的密切联系。
教学重点:*行四边形面积计算公式的推导及运用。
教学难点:通过转化,发现长方形和*行四边形之间的联系,推导出*行四边形的面积计算公式。
四、说教法、学法
1.教法:依据新课标,结合教材的编排意图与学情状况,针对小学生以形象思维为主的特点,我主要采用情境教学法、实际操作法、观察比较法和引导探究法等等,组织学生开展丰富多彩的数学活动,以激发他们的学习兴趣,调动他们的学习积极性,为他们创建一个发现、探索的思维空间,使他们能更好地去发现、去创造。
2.学法:“授人以鱼,不如授人以渔”。在教学中,我鼓励学生自主探究、合作实践,组织学生认真观察、分析讨论,引导学生通过观察、比较、操作、概括等行为来解决问题。
五、说教学设计
为了能更好地凸显素质教育课堂教学观,高效的完成教学任务,结合教材与学生的特点,我设计了如下环节:
(一)导入
为了让学生体会到数学的神奇,在新课伊始,我根据学生的兴趣特征设计了这样一个活动:(出示长方形的模型)把它拉伸会变成一个什么图形?你能画出它的高吗?你能计算出此图形的面积吗?通过这样的活动,在帮助学生巩固知识的同时,也制造出了以学生现有的知识水*无法解决的麻烦,从而激发了学生积极探求知识奥秘的欲望,更是水到渠成的导入了新课:(板书)*行四边形的面积。
(二)习新
“学起于思,思源于疑。”正是因为导入中制造的麻烦,让学生们有了探求的欲望。于是,我顺水推舟的设计了这样一个探究活动:在钉子板上用橡皮筋围了两个图形:一个长方形,一个*行四边形(面积与长方形一样大)。然后出示设计的问题:
1. 请测量长方形的长和宽,*行四边形的边长和高。
2. 请计算出长方形的面积。
3. 你猜测*行四边形的面积该如何计算?
带着这几个问题,开始小组合作探究。虽然探究可能会出现*行四边形的面积=边长×边长这样的结果,但是学生们学习的主动性得到了的发挥,学生的个性得到了彰显,能让他们体会到探究的乐趣。
在学生们展示完自己的结论后,我先不评价其结论的对与错,而是出示第四个问题:
4.请用数方格的方法验证自己的结论。(不满一格的都按半格计算。)
这样,就促使学生们迫不及待的去验证自己的结论,从而达到为下一步推导*行四边形面积计算公式做好准备的目的。
通过上面的探究活动,让学生们归纳出对这两个图形的认识:两个图形面积相等,长方形的长和*行四边形的底相等,宽和高也相等。虽然他们能认识到这些,但这三个结论之间并没有在他们的思维中产生联系,而这个联系正是本节课的重难点。为了突破这个难点,于是我又设计一个活动:出示一个*行四边形。
1.请画出它的高,测量它的底和高的长度。
2.沿着它的一条高裁剪,将会剪出两个什么样的图形?
3.你能否把这两个图形拼成一个我们熟悉的图形?
4.观察拼出的长方形和原来的*行四边形,你发现了什么?
(长方形的长和*行四边形的底相等,宽和高相等,面积也相等)
5.你能总结出*行四边形的面积计算公式吗?
通过这一系列的问题,引导学生们去交流讨论、合作探究、实验验证。这样既锻炼了学生的动手能力,也发展了学生的空间概念,同时也培养了学生的协作精神,更渗透了转化与*移的思想。
在学生归纳总结出*行四边形的面积=底×高,即S=ah之后,我又让学生们独立学习课本上的例1,再回过去解决导入中的问题,以此加深对面积计算公式的理解。
(三)巩固
理解了*行四边形的面积计算公式之后,我及时组织学生巩固运用。安排这样几道练习题:
1.画出下列*行四边形的高。
2.量出*行四边形的底与高的长度,并计算其面积。
学生们独立思考,完成练习,使其进一步理解了公式的运用,真正达到了学以致用的目的。
(四)拓展
巩固新知后,我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:
1. 这个*行四边形的高是多少?(P82/3)
2. 出示导入中可活动的长方形框架,任意拉这个框架,形成*行四边形,你知道它们的周长和面积有什么变化?什么情况下它的面积最大?
学生独立完成第一题,合作探究第二题,从而达到拓展视野,加深理解的作用。整个习题的设计,虽然题量不多,但涵盖了本节课所学的知识点。同时练习题的设计遵循由易到难的原则,层层深入,有效的培养了学生创新意识和解决问题的能力,同时也激发了学生的兴趣、引发了思考、发展了思维。
六、说评价
整节课我始终坚持把对学生学习过程的评价,贯穿于整个教学过程之中:对他们发现问题和解决问题的能力,通过展示来实现;对知识的理解和掌握,通过双向反馈来落实。
总之,本节课我贯穿新课改的理念,坚持以教师为主导,学生为主体,让学生经历“发现问题-解决问题-归纳总结-构建模型”的学习过程,让他们都参与到活动中来,真正实现面向全体。
*行四边形的面积教案(扩展2)
——《*行四边形的面积》 说课稿3篇
《*行四边形的面积》 说课稿1
一、教学目标
(一)知识与技能
让学生经历探索*行四边形面积计算公式的过程,掌握*行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
二、教学重难点
教学重点:探索并掌握*行四边形面积计算公式。
教学难点:理解*行四边形面积计算公式的推导过程,体会转化的思想。
三、教学准备
*行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
四、教学过程
(一)创设情境,激趣导入
1.创设情境。
(1)呈现教材第86页单元主题图。(PPT课件演示)
教师:瞧!校园门口,你在哪些物体上看到了我们学过的*面图形?
(2)学生汇报交流。
(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,*面图形的大小就是它们的面积。我们已经研究过哪些*面图形的面积?怎样计算?
预设学生回答:长方形的面积=长宽,正方形的面积=边长边长。
(4)引入新课:这幅图中除了有长方形和正方形,还有*行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入多边形的面积的学习。(板书单元课题:多边形的面积)
2.揭示本节课题。
复习引入。(PPT课件演示)
请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那*行四边形的面积怎样计算呢?今天这节课,我们就一起来研究*行四边形的面积。(板书课题:*行四边形的面积)
【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入*行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。
(二)主动探索,推导公式
1.用面积单位测量*行四边形的面积。
(1)提问:要知道这个*行四边形的面积,怎么办?(PPT课件演示)
引导学生回顾用面积单位测量图形面积的方法。
(2)操作:现在把它们放在方格纸上,一个方格代表1m2,不满一格的都按半格计算。*行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)
(3)学生先独立数*行四边形的面积,再互相交流。
预设*行四边形的面积:
方法一:从左往右数,每行6个,有4行,*行四边形的面积是24*方米;
方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24*方米。
长方形的面积:长6米,宽4米,面积是64=24(*方米)。
(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。
(5)填写表格。
①师生共同完成表格:*行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)
②引导学生观察:观察这个表格,你发现了什么?
③交流回报,小结:有的同学发现了,这个*行四边形的底与长方形的长相等,*行四边形的高和长方形的宽相等,*行四边形的面积与长方形的面积相等。还有的同学发现,这个*行四边形底乘以高正好等于它的面积,由此猜测*行四边形的面积=底高。
【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为*行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻*行四边形面积的计算方法做准备。
2.操作思考,推导公式。
(1)教师:看来,数方格的确能让我们知道*行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算*行四边形的面积呢?
这个*行四边形的面积恰好等于底高,那是不是所有的*行四边形的面积都等于底高呢?看来,还需进一步研究哦!(PPT课件演示)
(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将*行四边形转化成它们来计算面积呢?请大家借助手中的*行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。
(3)操作转化,推导公式。
①操作转化。
a.学生独立思考,动手剪拼*行四边形,将它转化成长方形后组内交流。
b.学生展示汇报。(PPT课件演示)
c.大家发现它们有什么相同之处?为什么要沿着*行四边形的高来剪开?有多少种不同的剪法?为什么?
②观察思考。
a.观察:原来的*行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)
b.思考:*行四边形的底和长方形的( )相等,*行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)
c.学生汇报。(教师板书)
③概括公式。
你能根据长方形的面积计算公式推导出*行四边形的`面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)
(4)回顾与小结。
①我们已经知道*行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?
②教师小结:首先把一个*行四边形沿高剪开后*移拼成一个长方形,再观察原来的*行四边形和拼接后得到的长方形,发现等量关系:*行四边形的底和长方形的长相等,*行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以*行四边形的面积等于底乘高。像这样把未知的*行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。
【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将*行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识沿高剪开后通过*移将*行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。
(三)巩固运用,解决问题
1.教学教材第88页例1。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道*行四边形花坛的底是6米,高是4米,求花坛的面积是多少*方米。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求花坛的面积,其实就是求什么?
③归纳:要求花坛的面积,其实就是求底是6米、高是4米的*行四边形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
2.课堂练习。
完成教材第89页练习十九第1题。
(1)学生独立完成。
(2)同桌互相说说自己是怎样做的。
(3)全班集体交流:这个问题你是怎样算的?
【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。
(四)变式练习,内化提高
1.基本练习。
完成教材第89页练习十九第2题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择*行四边形中对应的底和高来计算面积。)
参考答案:12cm2;18.72cm2;4.8cm2。
2.提高练习。
完成教材第89页练习十九第4题。(PPT课件演示)
(1)理解题意:怎样计算出这两个*行四边形的面积?需要知道什么?(先测量出*行四边形中对应的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:两个*行四边形的底和高分别是多少?怎样计算面积?
3.拓展延伸。
等底等高的*行四边形的面积一定相等吗?面积相等的*行四边形一定等底等高吗?(PPT课件演示)
【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。
(五)全课总结,畅谈收获
1.今天这节课学习了什么?怎样学的?
2.今天我们主要推导出了*行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了*行四边形的面积;再观察表格中的数据,猜测*行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的*行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的*行四边形与长方形之间的等量关系,从而推导出了*行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量观察猜测转化验证的过程,最后我们还利用公式解决了生活中的实际问题。
(六)作业练习
1.课堂作业:练习十九第5题。
2.课外作业:练习十九第3题。
*行四边形的面积教案(扩展3)
——《*行四边形的面积》 说课稿
《*行四边形的面积》 说课稿1
一、教学目标
(一)知识与技能
让学生经历探索*行四边形面积计算公式的过程,掌握*行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
二、教学重难点
教学重点:探索并掌握*行四边形面积计算公式。
教学难点:理解*行四边形面积计算公式的推导过程,体会转化的思想。
三、教学准备
*行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
四、教学过程
(一)创设情境,激趣导入
1.创设情境。
(1)呈现教材第86页单元主题图。(PPT课件演示)
教师:瞧!校园门口,你在哪些物体上看到了我们学过的*面图形?
(2)学生汇报交流。
(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,*面图形的大小就是它们的面积。我们已经研究过哪些*面图形的面积?怎样计算?
预设学生回答:长方形的面积=长宽,正方形的面积=边长边长。
(4)引入新课:这幅图中除了有长方形和正方形,还有*行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入多边形的面积的学习。(板书单元课题:多边形的面积)
2.揭示本节课题。
复习引入。(PPT课件演示)
请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那*行四边形的面积怎样计算呢?今天这节课,我们就一起来研究*行四边形的面积。(板书课题:*行四边形的面积)
【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入*行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。
(二)主动探索,推导公式
1.用面积单位测量*行四边形的面积。
(1)提问:要知道这个*行四边形的面积,怎么办?(PPT课件演示)
引导学生回顾用面积单位测量图形面积的方法。
(2)操作:现在把它们放在方格纸上,一个方格代表1m2,不满一格的都按半格计算。*行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)
(3)学生先独立数*行四边形的面积,再互相交流。
预设*行四边形的面积:
方法一:从左往右数,每行6个,有4行,*行四边形的面积是24*方米;
方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24*方米。
长方形的面积:长6米,宽4米,面积是64=24(*方米)。
(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。
(5)填写表格。
①师生共同完成表格:*行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)
②引导学生观察:观察这个表格,你发现了什么?
③交流回报,小结:有的同学发现了,这个*行四边形的底与长方形的长相等,*行四边形的高和长方形的宽相等,*行四边形的面积与长方形的面积相等。还有的同学发现,这个*行四边形底乘以高正好等于它的面积,由此猜测*行四边形的面积=底高。
【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为*行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻*行四边形面积的计算方法做准备。
2.操作思考,推导公式。
(1)教师:看来,数方格的确能让我们知道*行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算*行四边形的面积呢?
这个*行四边形的面积恰好等于底高,那是不是所有的*行四边形的面积都等于底高呢?看来,还需进一步研究哦!(PPT课件演示)
(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将*行四边形转化成它们来计算面积呢?请大家借助手中的*行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。
(3)操作转化,推导公式。
①操作转化。
a.学生独立思考,动手剪拼*行四边形,将它转化成长方形后组内交流。
b.学生展示汇报。(PPT课件演示)
c.大家发现它们有什么相同之处?为什么要沿着*行四边形的高来剪开?有多少种不同的剪法?为什么?
②观察思考。
a.观察:原来的*行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)
b.思考:*行四边形的底和长方形的( )相等,*行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)
c.学生汇报。(教师板书)
③概括公式。
你能根据长方形的面积计算公式推导出*行四边形的`面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)
(4)回顾与小结。
①我们已经知道*行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?
②教师小结:首先把一个*行四边形沿高剪开后*移拼成一个长方形,再观察原来的*行四边形和拼接后得到的长方形,发现等量关系:*行四边形的底和长方形的长相等,*行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以*行四边形的面积等于底乘高。像这样把未知的*行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。
【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将*行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识沿高剪开后通过*移将*行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。
(三)巩固运用,解决问题
1.教学教材第88页例1。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道*行四边形花坛的底是6米,高是4米,求花坛的面积是多少*方米。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求花坛的面积,其实就是求什么?
③归纳:要求花坛的面积,其实就是求底是6米、高是4米的*行四边形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
2.课堂练习。
完成教材第89页练习十九第1题。
(1)学生独立完成。
(2)同桌互相说说自己是怎样做的。
(3)全班集体交流:这个问题你是怎样算的?
【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。
(四)变式练习,内化提高
1.基本练习。
完成教材第89页练习十九第2题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择*行四边形中对应的底和高来计算面积。)
参考答案:12cm2;18.72cm2;4.8cm2。
2.提高练习。
完成教材第89页练习十九第4题。(PPT课件演示)
(1)理解题意:怎样计算出这两个*行四边形的面积?需要知道什么?(先测量出*行四边形中对应的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:两个*行四边形的底和高分别是多少?怎样计算面积?
3.拓展延伸。
等底等高的*行四边形的面积一定相等吗?面积相等的*行四边形一定等底等高吗?(PPT课件演示)
【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。
(五)全课总结,畅谈收获
1.今天这节课学习了什么?怎样学的?
2.今天我们主要推导出了*行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了*行四边形的面积;再观察表格中的数据,猜测*行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的*行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的*行四边形与长方形之间的等量关系,从而推导出了*行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量观察猜测转化验证的过程,最后我们还利用公式解决了生活中的实际问题。
(六)作业练习
1.课堂作业:练习十九第5题。
2.课外作业:练习十九第3题。
*行四边形的面积教案(扩展4)
——*行四边形的面积教案设计
*行四边形的面积教案设计1
【教材分析】
本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《*行四边形的面积》。*行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解*行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算*行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算*行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与*行四边形之间的关系,从而推导出计算*行四边形面积的公式。
【教学目标】
知识与能力目标:使学生能运用数方格、割补等方法探索*行四边形面积的计算公式,初步感受转化思想;让学生掌握*行四边形面积的计算公式,能够运用公式正确计算*行四边形的面积。
过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。
情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。
【学情分析】
*行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等*面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历*行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
【教学重点】掌握*行四边形面积计算公式。
【教学难点】*行四边形面积计算公式的推导过程。
【教具】两个完全一样的*行四边形、不规则图形、小黑板、剪刀、多媒体及课件。
【教学过程】
一、创设情境,引入课题。
1、游戏:小小魔术师。教师出示不规则图形。
(1)师:你能直接计算出这个图形的面积吗?
(2)师:你能计算出这个图形的面积吗?说一说用什么方法?
(3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
2、小结:刚才同学们先将不*整的部分剪下,再*移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
(设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究*行四边形面积公式的推导打下坚实的基础。)
二、激趣引思,导入新课。
师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的*行四边形胶合板。我觉得这是一件好事,因为*行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?
生1:我想知道要花多少钱才可以做成。
生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!
生3:我想知道这块胶合板的面积有多大。
师:我听出来了,大部分同学都想知道这块*行四边形胶合板的面积,这节课我们就来探究“*行四边形的面积”。(板书课题:*行四边行的面积)
(设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)
三、动手操作,探究发现。
1、用数方格的方法启发学生猜想*行四边形面积的计算方法。
师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出*行四边形的面积。
教师用课件演示:先出示一个画有方格(每个方格的面积是1*方厘米)的长方形,再将一个*行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。
(1)这个*行四边形的面积是多少*方厘米?
(2)它的底是多少厘米?
(3)它的高是多少厘米?
(4)这个*行四边形的面积跟它的高与底有什么关系?
(5)请同学们猜一猜:怎样计算*行四边形的面积?
2、引导学生把*行四边形转化为长方形,验证猜想推出*行四边形的面积公式。
我们用数方格的方法得到一个*行四边形的面积,但是用这个方法计算面积方便吗?
生:不方便。
师:既然不方便,我们能不能用更方便的方法来解决呢?
小组交流,学生讨论,发表意见。
生:用剪和拼的方法。
师:(出示一个*行四边形)这个*行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)
师:这条虚线也就是*行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)
师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?
(生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)
师:怎样移过去呀?*着移到右边,这种方法我们把它叫做*移。
师:再请一个同学展示一下,他的剪法有什么不一样吗?
(生:我在中间剪的)剪成两个完全一样的梯形,可以吗?*移过去也拼成了一个长方形。 (展示学生的成果)
师:老师有几个问题,我们把*行四边形转化成了长方形,原来*行四边形的面积和这个长方形的面积相等吗?*行四边形的底和高分别与长方形的长和宽有什么关系呢?
小组讨论:
⑴原来*行四边形的面积和拼成的长方形的面积相等吗?
⑵原来*行四边形的底与拼成的长方形的长有什么关系?
⑶原来*行四边形的高与拼成的长方形的宽有什么关系?
师:谁来说说你的想法。它的面积没有多,也没有少,*行四边形的面积等于剪拼后的长方形的面积。(板书)*行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长,宽=高)
师:长方形的面积=长×宽,那么*行四边形的面积怎样求?
生:*行四边形的面积=底×高(板书)
师:同意吗?谁能讲一讲,为什么*行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)
教师小结方法指名让生叙述。
师:如果用S表示*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形的面积计算公式可以写成S=ah(板书:S=ah)。
师:现在我们可以确定当初的猜想谁是正确的?
(设计思路:让学生对“*行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)
四、实践应用,巩固提高。
师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)
教师板书:5×4=20(*方米)
出示例1 (同桌讨论,独立完成,最后全班交流。)
教师板书:S=ah=6×4=24(*方米)
师:同学们真会动脑筋,能运用所学知识解决生活中的问题。
(设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)
五、分层练习,强化应用。
1、填空。
(1)把一个*行四边形转化成一个长方形,它的面积与原来的*行四边形( )。这个长方形的长与*形四边形的底( ),宽与*行四边形的高( )。*行四边形的面积等于( ),用字母表示是( )。
(2)0.85公顷=( )*方0.56*方千米=( )公顷
2、计算下面各个*行四边形的面积。
(1)底=2.5cm,高=3.2cm。 (2)底=*dm,高=7.5dm。
3、解决问题。
(1)小明家有一块*行四边形的菜地,面积是120*方米,量得底是20米,它的高是多少?
(2)一块*行四边形钢板,底8.5m,高6m,它的面积是多少?如果每*方米的钢板重38千克,这块钢板重多少千克?
(设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)
六、总结升华,拓展延伸。
1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?
(设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的`归纳、总结、概括、表达等多方面的能力。)
2、课后练习
(1)、练习十五第1题,第2题。(任选一题)
(2)、解决问题:选一个*行四边形的实物,量出它的底和高,并计算出面积。
*行四边形的面积练习题
1、填一填
(1)1*方米=( )*方分米=( )*方厘米
(2)把一个*行四边形转化成长方形,它的面积与原来的*行四边形的面积( )。
转化后长方形的长与*行四边形的( )相等,宽与*行四边形的( )相等。
(3)*行四边形的面积=( )×( ),字母公式为( )
(4)一个*行四边形的底是8.5米,高是3.4米,求其面积的算式是( )
(5)等底等高的两个*行四边形的面积( )
2、判断
(1)形状不同的两个*行四边形面积一定不相等( )
(2)周长相等的两个*行四边形面积一定相等( )
(3)知道一个*行四边形的底和其对应的高的长度就能求出它的面积( )
3、一块*行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?
24厘米
50厘米
升级跷跷板
4、有一个*行四边形的面积是56*方厘米,底是7厘米,高是多少厘米?
5、一快*行四边形的菜地,底是36米,高是25米,每*方米收白菜8千克,这块地共收白菜多少千克?
6、一个*行四边形的果园,底是30米,高是15米,中了90棵梨树,*均每棵梨树占地多少*方米?
智慧摩天轮
7、已知下图中正方形的周长是36厘米,求*行四边形的面积。
8、一块*行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?
*行四边形的面积教案设计
【教材分析】
本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“*行四边形区域”。*行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对*行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算*行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算*行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与*行四边形的关系,推导出*行四边形面积的计算公式。
(教学目标)
知识与能力目标:使学生运用数的*方法和填充法,探索*行四边形面积的计算公式,初步感受变换思想;使学生掌握*行四边形面积的计算公式,并能正确地利用该公式计算出*行四边形的面积。
过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。
情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。
【学习情况分析】
*行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解*行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等*面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画*行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。
【教学重点】掌握*行四边形面积的计算公式。
【教学难点】*行四边形面积计算公式的推导过程。
【教学辅助工具】两个相同的*行四边形、不规则图形、黑板、剪刀、多媒体、课件。
(教学过程)
首先,创建情景并引入主题。
1.游戏介绍:小魔术师。老师展示不规则的图形。
老师:你能直接算出这个图形的面积吗?
老师:你能算出这个图形的面积吗?告诉我怎么用它?
老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?
2. 小结:刚才同学们把不*整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)
(设计思维:“暖过去”是课堂教学开始的重要环节,起着承上启下的作用。通过提出复习问题,激发学生对已有知识的复习,拓宽学生的学习渠道
*行四边形的面积教案设计
教学目标:
(1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算*行四边形面积。
(2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和*移的思想。
(3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。
教学重点:
理解并掌握*行四边形的面积计算公式,并能用公式解决实际问题。
教学难点:
理解*行四边形的面积公式的推导过程。
教具、学具准备:
课件、长方形和*行四边形图片、剪刀、*行四边形框架等。
教学过程:
一、创设情境、导入新课。
大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为*行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)
你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那*行四边形的面积我们怎样求呢?这节课,我们就共同来探讨*行四边形的面积。(板书课题)
出示长方形和*行四边形教具,引导学生观察后说一说长方形和*行四边形的各部分名称。长方形与*行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求*行四边形的面积呢?(课件演示)
二、自主探究,合作验证
探究一:用数方格的的方法探究*行四边形的面积。
请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求*行四边形的面积,认真按提示填表。出示温馨提示:
①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。
②填完表后,同学们相互议一议,并谈一谈发现。
你是怎么数的?你有什么发现吗?能猜测一下*行四边形的面积公式是什么吗?(学生汇报)
探究二:用割补的方法来验证猜测。
小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出*行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)
我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把*行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)
(1)用剪刀将*行四边形转化成我们学过的其他图形。(剪的次数越少越好。)
(2)剪完后试一试能拼成什么图形?
师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和*行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):
回顾发现过程:
1、把*行四边形转化成长方形后,( )没变。因为长方形的长等于*行四边形的( ),宽等于*行四边形的( ),所以*行四边形的面积=( ),用字母表示是( )
2、求*行四边形的面积必须知道*行四边形的( )和( )。
探究过程小结(板书)
师:小刚和小明马上到校门前测量了长方形和*行四边形。得出:长方形的长是6米,宽是4米,*行四边形的底是6米,高是4米。
然后他们手拉手找到老师说了一些话。你知道他们说了什么?
生:长方形和*行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)
三、运用新知,练中发现
1、基本练习
(1)口算下面各*行四边形的面积
A、底12米,高3米:
B、高4米,底9米;
C、底36米,高1米
通过这组练习,你有什么发现吗?(教学课件)
发现一:发现面积相等的*行四边形,不一定等底等高。
(2)画*行四边形比赛(大屏幕出示比赛规则)
比赛规则:
1、拿出百宝箱中的方格纸。在方格纸上的两条*行线间,画底为六个格(底固定),看能画出多少个*行四边形。
2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)
发现二:1.发现只要等底等高,*行四边形面积就一定相等。
2.等底等高的*行四边形,形状不一定完全相同。
四、总结收获,拓展延伸
1、通过这节课的学习,你知道了什么?
2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?
大屏幕出示(教学课件演示)
*行四边形,特点记心中。
面积同样大,形状可不同。
等底又等高,面积准相同。
要是求面积,底高来相乘。
(齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。
拓展延伸
请大家看老师的演示。(用*行四边形框架演示由长方形拉成*行四边形)。如果把长方形拉成*行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。
五、板书设计:
*行四边形的面积教案设计
1.进一步认识*行四边形是中心对称图形。
2.掌握*行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。
3.充分利用*面图形的旋转变换探索*行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。
教学重点与难点
重点:利用*行四边形的特征与性质,解决简单的推理与计算问题。
难点:发展学生的合情推理能力。
教学准备直尺、方格纸。
教学过程
一、提问。
1.*行四边形的特征:对边( ),对角( )。
2.如图,在*行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆*行四边形的特征。)
二、引导观察。
1.按照课本第30页“探索”画一个*行四边形ABCD,对角线AC、BD相交于点O,量一量并观察,OA与OC、OB与OD的关系。
2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与OD的关系了吗?
通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出*行四边形的特征:*行四边形的对角线互相*分。
(培养学生用自己的语言叙述性质。)
三、应用举例。
如图,在*行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。
(引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握*行四边形对角线互相*分以及对边相等的应用。)
例3如图,在*行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?
(本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)
四、巩固练习。
1.如图,在*行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。
2.在*等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。
3.*行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。
4。试一试。
在方格纸上画两条互相*行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出*行线之间的垂线段的长度。得到*行线又一性质:*行线之间的距离处处相等。
5.练习。
如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条*行线I1、l2之间画出其他与△ABC面积相等的三角形吗?
五、看谁做得又快又正确?
课本第34页练习的第一题。
六、课堂小结
这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?
七、作业
补充习题
*行四边形的面积教案设计
*行四边形的面积计划学时1
学习内容分析
学生已经了学习长方形,正方形,三角形的面积,而本节课开始怎样计算探究*行四边形的面积,计算*行四边形的面积既是对之前学过的知识的延续又是对接下来学习梯形等面积的铺垫。因此,学好它既能对旧知识的迁移又能为今后的学习打下基础。
学习者分析
根据心理学知识该阶段的学生知识迁移能力有待提高,空间想象能力,观察能力,动手操作能力较强,
教学目标知识与技能1、认知目标:通过学生观察、讨论、动手体验,使学生理解并掌握*行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。
2、能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3.情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
过程和方法:合作学习,自主探索
情感态度与价值观让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
知识点学习水*媒体内容与形式使用方式使用效果
*行四边形面积的计算还未学*行四边形面积公式,但已经学习了三角形,长方形面积公式让同学先自己试图转化计算,然后在ppt展示*行四边形与长方形的转换过程在ppt展示*行四边形与长方形的转换过程使得同学更形象生动了解长方形和*行四边形之间的转换,有利于同学推导出*行四边形的面积公式
课后练习同学们已经学习了*行四边形的面积但还未实践应用在ppt展示练习题在ppt展示练习题同学更形象生动了解*行四边形公式,有利于同学的学习
教学过程
教学环节教学内容所用时间教师活动学生活动设计意图
展示出长方形问同学这样拉回变成生命形状,生命改变了,什么没有改变为*行四边形的讲解和本节课的内容铺垫5分钟展示出长方形并通过拉其一端展示出*行四边形,同时扔出疑问给同学解决,为本节课做铺垫学生通过想象观察配合课堂进行由生活中学生熟悉的事物引入新知,激发起学生的学习兴趣,增强了学生的探索欲望和积极性,同时为新知的学习做好了情感铺垫
让同学们通过已经学习的知识计算*行四边形的面积
同学们通过已经学习的知识计算*行四边形的面积,运用旧知识迁移的方法计算,巩固旧知识12分钟教师下去巡视同学做的情况,进行总结,然后再在ppt展示学生通过已经学习的知识在小组讨论下用不同的方法计算出*行四边形的面积这一环节充分发挥学生学习的主体性,培养学生的探索精神,为学生提供了开放的探索时间和空间,鼓励创新、发现;放手让他们去操作、去探索,使学生获得战胜困难,探索成功的体验。从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主题,体现了活动化的数学学习过程,可以有效提高课堂教学效率与质量。
通过ppt的转换总结得出*行四边形面积公式*行四边形面积公式的推导15分钟教师在ppt展示各种转换方法也把长方形转换*行四边形展示出来引导同学说出*行四边形的面积对刚刚的学习进行总结,得出*行四边形的面积运用生动形象的课件,再一次演示其中一种方法的验证过程.并介绍*行四边形的"高"和"底".让学生体验将*行四边形转化成长方形的过程,加深学生对图形转化的理解,并在具有挑战性的活动中激发学生参与探究活动的兴趣
对*行四边形公式进行巩固练习同学已经学*行四边形的公式但还未实际应用8分钟教师根据学生所学情况在ppt展示所对应练习题学生根据所学的知识做练习巩固知识点通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心
课堂教学流程图
教学过程
一、情境创设,揭示课题
师:同学们,你们看老师手上拿的什么形状?如果老师现在固定这个端点,再将右边这个端点向右拉,你们想象一下,它会变成什么形状呢?
生:*行四边形
师:对了,就是*行四边形,你们在这个过程中什么改变了什么没有发生改变呢?
生:形状,角度,面积
师:那面积是变大还是变小
生:此时回答不一
教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,*行四边形的面积。(板书)
二、创设问题情景,引发自主探索.
1、提出问题,鼓励猜测
那么大家猜一猜*行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个*行四边形,(演示)还可能与什么有关?(高)那么*行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、自主探究、验证猜测:
师:用剪刀把*行四边形剪成已经学习过的图形来计算他的面积,想一想你打算用什么方法来计算?
3、展示成果,互相交流
同学的计算方法不一,抽取最简单的进行讲解,引出数格子的方法,让同学们总结长方形面积和*行四边形的面积关系
指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。
方法二:转化法
师:有什么发现?
师:你们成功的把*行四边形转化成了长方形,这一长方形与原来的*行四边形有什么关系?
生:长方形的长等于*行四边形的底、宽等于*行四边形的高
师:是这样吗?师课件演示解说强调*移
师:还有其他的剪拼方法吗?
4、整理结论
师:你是怎么剪的?沿什么剪的?为什么要沿高剪开?拼出的长方形和原来的*行四边形之间,你发现了什么?
提问:(1)*行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与*行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求*行四边形的面积的方法呢?
师:你们觉得这几种方法有没有共同之处?
(都是沿高剪开的,都是把*行四边形转化成长方形)
课件演示,结合课件填写各部分间的相等关系。
板书:底=长高=宽长方形的面积=正方形的面积
师:我们一起读一下我们发现的结论。
师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。
师:你学到了些什么?
师:如果用表示S*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形面积的计算公式可以写成:S=ah
三、方法应用
师:现在我们来算一下这块*行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)
师:这个*行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)
师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(S)。你后面用的单位为什么是*方厘米呀?
四、梳理知识,总结升华
师:这节课同学们通过猜想发现*行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?能说说这节课,你是怎么学习的?你有哪些收获吗?
五、课堂检测
修改建议
结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。
*行四边形的面积教案(扩展5)
——*行四边形的面积教学设计10篇
*行四边形的面积教学设计1
教学目标:
1.探索*行四边形面积的计算方法,会运用“转化”的数学思想方法推导*行四边形的面积计算公式,会计算*行四边形的面积。
2.让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。
教学重点:
探究*行四边形的面积计算公式。
教学难点:
充分理解剪拼成的充分理解剪拼成的长方形与原*行四边形之间和关系。
教学具准备:
*行四边形纸片、尺子、剪刀、课件。
教学过程
一、谈话,揭题:
1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?
2、揭题:*行四边形的面积。
二、探究新知:
问题(一)要求这个()的面积,你认为必须知道哪些条件?
1、同桌交流
2、反馈:①长边×短边=10×7=70*方厘米
②底×高=10×6=60*方厘米
3、引发矛盾冲突:同一个*行四边形的面积怎么会有两个答案呢?
4、学生动手验证(小组合作)
5、请小组代表说明验证过程
问题(二)为什么要沿着高将*行四边形剪开?
问题(三)剪拼成的长方形的面积是60*方厘米,你怎么知道原*行四边形的面积也是60*方厘米?
问题(四)是否每次计算*行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个*行四边形池塘的面积,你还能剪拼吗?
1、引导观察,*行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?
2、推导公式:*行四边形的面积=底×高
3、小结
问题(五)为什么不能用长边乘短边(即邻边相乘)来计算*行四边形的面积?
1、动态演示:引导发现周长不变,面积变大了。
2、动态演示:发现面积变小了。
3、要求*行四边形的面积,现在你认为必须知道哪些条件?
问题(六)是不是所有*行四边形的面积都等于底×高呢?
让学生拿出各自的*行四边形,动手剪拼,看看行不行。
三、应用新知
1.左图*行四边形的面积=?
2.解决例:*行四边形花坛的底是6米,高是4米,它的面积是多少?
四、总结:
1.回想一下今天我们是怎样学习的*行四边形的面积?
2.你还想学习哪些知识呢?
*行四边形的面积教学设计2
教材分析
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《*行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解*行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析
1、学生在以前的学习中,初步认识了各种*面图形的特征,掌握了长方形、正方形的面积计算,加上这些*面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标
知识与技能
1、使学生理解和掌握*行四边形的面积计算公式。
2、会正确计算*行四边形的面积。
过程与方法:
1、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力。
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点
重点、难点:理解和掌握*行四边形的面积计算公式;理解*行四边形的面积计算公式推导过程。
教学过程
一、复习导入
1、什么叫面积?常用的面积计量单位有那些?
2、出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知
1、情景导入:出示长方形、 *行四边形 。这两个图形哪一个大一些呢?*行四边形的面积怎样算呢 ?
板书课题:*行四边形的面积
2、用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个*行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到*行四边形与长方形的底与长、高与宽及面积分别相等;这个*行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2、推导*行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个*行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,*行四边形的面积是不是也有其他计算方法呢?
(2)归纳学生意见,提出:通过数方格我们已经发现这个*行四边形的面积等于底乘高,是不是所有的*行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个*行四边形变成一个长方形计算呢?请同学们试一试。
a.学生用课前准备的*行四边形和剪刀进行剪和拼,教师巡视。
b.请学生演示剪拼的过程及结果。
c.教师用教具演示剪—*移—拼的过程。
(3)我们已经把一个*行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的*行四边形,你发现了什么?
小组讨论。出示讨论题:
①拼出的长方形和原来的*行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的*行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出*行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个*行四边形转化成为一个长方形,它的面积与原来的*行四边形面积相等。
这个长方形的长与*行四边形的底相等,
这个长方形的宽与*行四边形的高相等,
因为 长方形的面积=长×宽,
所以 *行四边形的面积=底×高。
3、教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把*行四边形的面积计算公式用字母表示出来。
S=ah
三、 应用反馈。
1、出示教材练习十五第1题。读题并理解题意。
学生试做,交流作法和结果。
2、讨论:下面两个*行四边形的面积相等吗?为什么?
学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)
四、课堂小结。
通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)
*行四边形的面积教学设计3
[课程标准]
探索并掌握*行四边形的面积公式,并能解决简单的实际问题。
[学情分析]
学生在前期的学习中,已经认识了*行四边形,并且会画出*行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于*行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算*行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由*行四边形剪拼成长方形后,长方形的长和宽与*行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解*面图形之间的变换关系,发展空间观念。
鉴于此,帮助学生理解*行四边形转化成长方形后长方形的长和宽与*行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。
[学习目标]
1、通过操作活动,经历推导*行四边形面积计算公式的过程,能用语言叙述出*行四边形面积的推导过程,得出*行四边形的面积公式。(CS)
2、能运用公式计算*行四边形的面积,并能解决一些相关的实际问题。(CS)
[评价任务]
评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出*行四边形的面积公式。
评价任务2:完成活动8和练习1,练习2,练习3,运用*行四边形面积公式解决相关的实际问题。
[资源与建议]
1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了*行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它*面图形面积公式的推导建立模型。
2、相关的资源:
(1)多媒体课件,主要依托课件进一步演示*行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出*行四边形的面积公式。
(2)*行四边纸和剪刀,主要是让学生通过剪拼把*行四边形转化成长方形,让学生经历*行四边形面积公式的推导过程,渗透“转化”思想。
3、本课时的学习按以下流程进行:情境导入用数方格的方法数出*行四边形的面积把*行四边形转化成长方形推导出*行四边形的面积公式巩固应用。
4、本节课的重点是掌握*行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是*行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把*行四边形转化成长方形,找出长方形和*行四边形的关系,从而顺利推导出*行四边形的面积公式。
[教学过程]
一、情境导入
出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?
师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那*行四边形的面积你会计算吗?今天我们就一起来研究*行四边形的面积。(板书课题:*行四边形的面积)
[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算*行四边形的面积?]
二、探究新知
1、用数方格的方法计算*行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。
(1)先看要求(女生读要求):一个方格代表1*方米,不满一格的都按半格计算。
(2)、活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)
(3)、活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)
生:*行四边形的底与长方形长相等,*行四边形的高与长方形宽相等,*行四边形面积底与长方形的面积相等。
生:我发现*行四边形的面积=底×高
师:*行四边形底6高4面积24,*行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的*行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。
[设计意图:通过让学生观察所填数据,发现长方形的长和宽与*行四边形底和高的关系,为后面推导*行四边形的面积公式做准备。]
2、合作交流探究新知
(1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把*行四边形转化成我们学过的哪个图形?怎样转化?
(2)、活动4:动手操作
以小组为单位,请大家利用准备好的*行四边形和剪刀动手试一试,通过剪,拼等方法把一个*行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)
(3)、活动5:学生汇报、交流。
师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,
(边演示边说剪拼过程,并贴剪拼图于黑板。)
师:你转化成了什么图形?你是怎样把*行四边形转化成长方形的?
你是沿着*行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?
哪个小组和他剪的不一样?
师:看来沿着*行四边形任意的一条高剪开,然后*移都能转化成一个长方形。
(4)、大屏幕演示不同的拼法。
(5)、活动6:小组讨论
师:我们运用了转化的方法把*行四边形转化成*行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的*行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)
小组讨论:
a、拼成的长方形的面积和原来*行四边形的面积—————。
b、拼成的长方形的长与原来*行四边形的底———————。
c、拼成的长方形的宽与原来*行四边形的高———————。
(6)学生汇报,教师总结板书:
师:我们把一个*行四边形转化成为一个我们学过的长方形,它的面积与原来的*行四边形面积相等。这个长方形的长与*行四边形的底相等,这个长方形的宽与*行四边形的高相等,因为长方形的面积=长×宽,所以*行四边形的面积=底×高。
教师板书*行四边形的面积=底×高,
(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)
(8)介绍板书字母式。
师:我们经过大胆猜测,操作验证,推导出*行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么*行四边形的面积公式就可以表示为S=ah。
观察这个公式,我们可以发现,要求*行四边形的面积必须知道什么条件?(底和高)现在会求*行四边形花坛的面积吗?
[设计意图:学生在操作、交流、归纳中探究出了*行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]
三、实践应用
活动8;学习例1:*行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)
[设计意图:在明确*行四边形的面积公式后,让学生会利用公式解决实际问题。]
四、课堂检测
1、练习1:看图计算*行四边形的面积:(单位:厘米)(DO2)
2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)
3、练习3:有一块*行四边形的玻璃,面积是840*方分米,底是30分米。这块玻璃的高是多少分米?(DO2)
[设计意图:通过不同习题的练习,巩固对*行四边形面积公式的应用。]
五、全课小结。
想一想你这节课学到了什么?
板书设计:*行四边形的面积
长方形的面积=长×宽
↓↓↓
*行四边形的面积=底×高
S=a×h
=ah
=ah
*行四边形的面积教学设计4
【教学目标】
1、通过学生自主探索、动手实践推导出*行四边形面积计算公式,理解和掌握*行四边形的面积计算公式,能正确求*行四边形的面积。
2、让学生经历*行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。
【教学重点、难点】
教学重点:探究并推导*行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个*行四边形转化为一个长方形,找出两个图形之间的联系,推导出*行四边形面积的计算公式。
关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即*行四边形面积公式的推导。关键是通过“剪、移、拼”将*行四边形转化成长方形后,找出*行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解*行四边形面积的推导过程。
【教具、学具准备】
多媒体课件,*行四边形纸片三个、直尺(三角尺)、剪刀、*行四边形图片一个。
【教学过程】
一、创设情境,抽取方法、导入新课
1、师:同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)
师:老师今天也带来了两个图形,但并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。
学生思考、回答:
(1)数格子的方法:一样大。
(2)把第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。
动画演示割补的过程。
师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地比较它们的面积——这种方法在数学上叫做“割补——转化”法。“转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?
既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积:
这是个什么图形?(*行四边形)板书课题。
二、应用方法,动手操作,探究新知
1、预设问题:
怎么就能计算出它的面积呢?(学生思考1分钟。)为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个*行四边形纸片、直尺(三角尺)、剪刀。
2、探究公式:
(1)出示问题:
师:先看老师给大家的几个提示(师读提示):
友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:
①*行四边形可以转化成学过的哪种图形?
②*行四边形的底和高分别与转化后的图形有什么关系?
③怎样通过转化后的图形推导出*行四边形的面积计算方法呢?
(学生在独立思考的基础上进行合作探究)
(2)现在利用我们的学具,小组合作,看看能不能想办法把*行四边形转化成我们学过的图形来计算面积?比一比哪个小组最快研究出来。
(3)小组探究。
(4)组间展示交流:
师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线剪的?)
师:谁还有不同的剪法?
动画展示割补——转化的过程:
(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)
(4)师生交流提炼,形成板书:
师生总结:不管利用哪种割补方法,我们都能把*行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于*行四边形的底,长方形的宽就等于*行四边形的高。根据长方形面积的计算方法,我们就可以得出*行四边形面积的计算方法:
师:计算*行四边形面积,必须知道什么?(底和高,缺一不可。)
3、教学例1:
师:我们利用这个成果来解决一个问题好吗?
出示例1:
学生回答,教师板书:S=ah=6×4=24(cm2)
4、巩固小结:
通过这节课的研究,我们发现*行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了*行四边形面积公式:*行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。
三、分层训练,巩固内化
1、求下面的*行四边形的面积,只列式不计算:
(第三个图形计算中提问:还可以怎么计算?用12×9.6行不行?强调底与高的对应)
2、慧眼识对错:
(1)一个*行四边形的底是20厘米,高是1分米,它的面积是20*方厘米。()
(2)*行四边形的底越长,面积就越大。()
(3)下面*行四边形的面积是:8×5=40(*方厘米)()
(4)一个*行四边形的面积是36cm2,底是9cm,那么它的高是4cm。()
3、老师最近买了一辆新车,想买一个停车位,选中了一个*行四边形的,停车位的价格是每*方米5000元,老师一共需要付多少钱呢?
要计算付多少钱,需要先怎么办呢?(测量长和宽,计算停车位的面积),老师已经测量好了,(出示数据:底3米,高5米)你们帮老师算算钱数好不好?
学生计算、展示。
师:谢谢你们帮我算出了应付的钱数,我回家就可以准备了。
4、为了方便行人,某小区需要在一片绿化带中修一条*行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪的面积最小?你想到了什么?
四、课堂小结:
师:这节课你有什么有收获?
师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。
【板书设计】
*行四边形的面积教学设计5
教学内容:
九年义务教育六年制小学数学第九册70页一72页。
教学目的:
1.使学生理解*行四边形面积计算公式的来源,能运用公式正确地计算*行四边形的面积,并会计算一些简单的有关*行四边形面积的实际问题。
2.培养学生初步的逻辑思维能力和空间观念。
3.结合教材渗透转化思想。
教学重点:掌握和运用*行四边形面积计算公式。
教学难点:*行四边形面积公式的推导过程。
课前准备:投影器、长方形框架、*行四边形纸片等。
教学过程:
一、课前谈话:
师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?
曹冲真聪明,他把不好称的大象转化成了和它一样重量的石头,结果得到了大象的重量。你们想做曹冲这样聪明的人吗?
二、创设生活情境
这学期一开学我们学校的清洁区进行了重新划分,(课件出示花坛图)这是要分给五一班和五二班的清洁区。两个卫生区的面积一样吗?有什么好的判断方法吗?
学生自由发言。
师:长方形花坛的面积你们肯定会算,知道什么就可以了?*行四边形的面积会算吗?今天咱们就一起来探讨*行四边形的面积。(板书)
三、探究新知
1、自主探索
出示一*行四边形纸片,这是一张*行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个*行四边形的面积!
学生以小组为单位开展活动,教师巡视。
汇报、反馈:都有结果了吧,哪个小组先来汇报?
各小组派代表发言。
2、对比分析
每个小组都得到了这个*行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。
3、归纳总结
你们真聪明,能把没有学过的知识转化成学过的知识,现在这个长方形的面积怎样求?它的长和宽与原来*行四边形的什么有关?
想一想,这个长方形的面积其实就是谁的面积?由此你们知道怎样求*行四边形的面积了吧?谁来说一说?
四、巩固运用
咱们会计算了*行四边形的面积,接下来我们就到生活中去看看吧!
1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?
2、P82看第2题。
3、课件出示:P83第题,这两个*行四边形的面积相等吗?为什么?
五、小结:今天大家学得开心吗?你们都有哪些收获?
出示一个长方形框架,这是什么形状?(再拉变形)现在变成什么了?想一想,这两个图形的面积相等吗?为什么
*行四边形的面积教学设计6
教学目标:
1、理解并掌握*行四边形面积的计算公式,会利用公式正确计算*行四边形的面积。
2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。
3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。
教学重点:
理解并掌握*行四边形面积的计算公式,会利用公式正确计算*行四边形的面积。
教学难点:
理解*行四边形面积公式的推倒过程,会利用公式正确计算*行四边形的面积。
教学准备:
*行四边形卡片剪刀方格子
教学过程:
一、创设情境,激趣导入
师:前些日子,我们学校租车组织了一部分同学去清源山脚下的假日农庄拔萝卜,我们班也有三个同学去了,现在我们现场采访一下,这几位同学拔完萝卜后有什么感受?
学生汇报
师:这次拔萝卜让我们体会到了劳动的快乐,也让我们感受到了丰收的喜悦。可是我们还要租车大老远跑到那边去很不方便,偶然的机会,我们知道了农庄有一位老伯有块地在承天寺,我们就商量:能不能把地换一下?老伯说:“好啊!”于是我们到两块地里去看了一下,感到为难了。同学们,你们愿意帮我们解决问题吗?(愿意)原来,这两块地的形状不一样,一块是长方形,一块是*行四边形,怎样知道他们的大小呢?这样换公*吗?
(多媒体出示一块长方形的地,一块*行四边形的地)
学生汇报
师:你们准备怎样解决呢?
生:分别算出长方形和*行四边形的面积就行了。
师:怎样才能知道这块长方形地的面积呢?(引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)
多媒体出示方格和长方形的长与宽,学生求出长方形的面积。
师:那这块*行四边形面积怎样求呢?
学生小组交流
师:今天我们就来研究怎样求*行四边形的面积。(板书:*行四边形的面积)
二、动手实践,探索新知
学生汇报,教师引导:
1、数格子求*行四边形的面积
(多媒体出示格子,并说明一个方格表示1*方厘米)
师:现在就请同学们用这个方法算出*行四边形的面积(说明要求:不满一格的都按半格计算)。
学生汇报,得出*行四边形的面积。
师:通过数格子,我们发现我们的*行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公*了吗?(公*)
引导:我们用数方格的方法算出了这个*行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,*行四边形的面积是不是也有其他计算方法呢?
2、割补法求*行四边形的面积
学生猜测
师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的*行四边形卡片、剪刀等学具,想办法来验证验证。
学生动手实践,合作交流。
学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的*行四边形,它的面积等于长乘宽)
教师用课件演示剪——*移——拼的过程。
师:我们已经把一个*行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的*行四边形,你发现了什么?引导学生讨论:
1、拼出的长方形和原来的*行四边形比,面积变了没有?什么变了?
2、拼出的长方形的长和宽与原来的*行四边形的底和高有什么关系?
3、你能根据长方形的面积计算公式推导出*行四边形的面积计算公式吗?
学生汇报,教师归纳:
经过同学们的努力,我们发现把一个*行四边形转化为一个长方形,它的面积与原来的*行四边形面积相等,*行四边形的底等于长方形的长,*行四边形的高等于长方形的宽。
师:现在谁能用一句话概括出*行四边形的面积?
学生汇报,教师板书:
此主题相关图片如下:
如果用s表示*行四边形的面积,a表示*行四边形的底,h表示*行四边形的高,那么,*行四边形的面积公式可以怎么写呢?
s=a×h
师:刚才我们已经推导出了*行四边形的面积公式,知道了要求*行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
三、练习深化,巩固新知
1、计算下列图形的面积。(单位:cm)
此主题相关图片如下:
2、先估一估,再算一算下面哪个*行四边形的面积与给出的*行四边形的面积一样大?
此主题相关图片如下:
3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
此主题相关图片如下:
四、知识应用,总结评价
师:生活中还有哪些地方应用到我们今天所学的知识呢?
学生交流
师:我发现同学们通过今天的学习,收获还是很大的,谁愿意来跟我们分享一下你通过今天的学习,有什么收获呢?你认为你今天的表现怎么样?
学生交流。
*行四边形的面积教学设计7
教学目标:
1、能用割补的方法,把*行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出*行四边形面积的计算方法
2、能用*行四边形面积的计算方法解决简单的实际问题。
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
教学重点:
推导*行四边形面积公式,并能够运用*行四边形面积公式解决简单的实际问题。
教学难点:
推导*行四边形面积公式
教学准备:
课件*行四边形硬纸片剪刀透明方格纸
教学过程:
一、情境激趣:
师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?
1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺*行四边形的草坪需要多少钱?师:需要先求什么?
生:*行四边形的面积。师:这节课我们就来研究*行四边形的面积。(板书课题)
二、实验探究:
1、猜想
那么大家猜一猜*行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个*行四边形,(演示)还可能与什么有关?(高)那么*行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验
1)独立自主探究:
师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的*行四边形和长方形和表格、剪刀、*行四边形,想一想你打算用什么方法来研究?
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:
(1)数格子(把表格带到前面说)
(2)剪拼
师:你们成功的把*行四边形转化成了长方形,这一长方形与原来的*行四边形有什么关系?(生:长方形的长等于*行四边形的底、宽等于*行四边形的高)你们小组转化的清楚,介绍的明白真了不起)
是这样吗?师课件演示解说强调*移
师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:*行四边形的面积=底*高)
师:如果用s表示*行四边形的面积,用a表示*行四边形的底,用h表示*行四边形的高,那么*行四边形的面积公式又该怎样写呢?s=ah
四、运用公式解决
师:现在我们来算一下铺这块*行四边形草坪要用多少钱?
(生口算)
五、拓展练习
1、求下列图形的面积是多少?
底15厘米,高11厘米
(不仅准确计算出了结果,速度还很快,真不错。)
2、开放题:这是一张全国地图,有一个省的地形很接近*行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再*些)
(能在实际问题的解决中恰当运用公式,了不起)
3、学校要建一个面积是12*方米的*行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)
六、全课小结:
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用*移这种方法把*行四边形转化成长方形再与*行四边形进行比较得出*行四边形的面积的师演示)你们很了不起,能想办法把*行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《*行四边形的面积》为题写一篇数学日记,写清*行四边形的面积的推导过程,可以画、也可以剪贴。
课后反思
课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:
1、适时渗透、领悟思想方法
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。
2、适时引导、主动建构知识
学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:*行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。
3、适时点拨、有效进行指导
探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把*行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿*行四边形的高剪开,是将*行四边形转化成长方形的关键。
课例点评
这节课教师在教学时以图形内在联系为线索,以转化这条数学思想方法为主线,在操作、观察、比较活动中,通过孕伏、理解、强化的过程,让学生在获得知识的同时,领悟转化的数学思想方法。具体表现在以下几点:
1、在情境中蕴含知识,孕伏思想方法
这节课情境的创设一方面紧紧地围绕所要探索的数学知识,另一方面又充分体现了知识之间的内在联系。创设了江滨公园铺草坪的情境图,分别呈现了一个长方形和一个*行四边形的草坪,并提供每*方米草坪的价格,引导学生根据信息提出问题。这一情境中既有长方形面积的计算,又有*行四边形面积的计算,把这些知识都融入一个具体的生活情境中,既唤起了学生已有的知识经验,又暗含了*行四边形的面积与长方形的面积有关。
2、在探究中体验知识,理解思想方法
这节课沿着“提出猜想——思考验证方法——实践验证”这个过程进行。一是独立探究。让每个学生根据自己的体验,用自己的思维方式进行探究,并且提出了活动要求。一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去探究所研究的图形与转化后的图形各部分之间有什么联系,从而找到*行四边形面积的计算方法。二是合作探究。在学生独立探究的基础上,让学生在小组内进行交流。通过交流,学生知道,任何形状的*行四边形都可以转化成长方形,这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。
3、在反思中提炼知识,强化思想方法
教师在教学中注重引导学生对转化过程进行反思。第一次是在学生汇报交流之后,教师用课件呈现图形转化的过程引导学生进行反思,重点是理解转化的思想方法;第二次是课即将结束时,教师引导学生总结这节课学习内容时再次回放图形转化的过程,重点是强化转化的思想方法。并引导学生:“在今后学习其它*面图形的面积时,还要用到这种方法。”这样为学生以后学习三角形、梯形面积的计算进行了思想方法的延伸。
总之,这节课教学时有两条主线,一条是数学基础知识,另一条是数学思想方法,并且把领悟数学思想方法作为数学教学的要务,把掌握数学思想方法作为学生数学学习的最高境界。
*行四边形的面积教学设计8
教学内容:
人教版实验教科书五年级数学上册第五单元。
教学目标:
1、让学生经历看、数、想、剪、移、拼、说等过程探讨*行四边形的面积公式,并能用字母表示,会用公式计算*行四边形的面积。
2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“*移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。
3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。
教学重点:
使学生理解和掌握*行四边形面积公式并会应用。
教学难点:
理解*行四边形面积计算公式的推导过程。
教具、学具准备:
*行四边形纸片、剪刀及电脑课件、三角板。
教学流程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢?
师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?
然后给出长方形的长和宽让学生计算长方形的`面积。
提问:那*行四边形的面积你会算吗?从而导入新课。
板书课题:*行四边形的面积
(设计意图:本环节在学生现有知识水*中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。)
操作探索,获取新知
1.数方格感知*行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求*行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)
(2)汇报交流自己的发现。
(3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出*行四边形的面积吗?
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算*行四边形面积的公式就容易解决了。
(设计意图:本环节主要通过让学生用数方格的方法,初步感知*行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)
2、应用“转化”思想,引入割补、*移法.
(1)小组合作探究:想办法充分利用手中的学具把*行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、*移法
(设计意图:通过让学生亲身经历把*行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)
3、建立联系,推导公式
(1)小组合作探索:
a、原来的*行四边形转化成长方形后,什么变了?什么没变?(=)
b、拼成长方形的长与原来*行四边形的底有什么关系?(=)
c、拼成长方形的宽与原来*行四边形的高有什么关系?(=)
d、能否根据长方形的面积公式推导出*行四边形的面积计算公式?(*行四边形的面积=)
(2)交流*行四边形和长方形之间的联系:*行四边形的面积=长方形的面积;长=底;宽=高;*行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本81页。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算*行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了*行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)
(二)巩固应用,内化新知
a、前面的花坛题
b、课本82页第2题:你能想办法求出下面两个*行四边形的面积吗?
(教师巡视,收集典型的错误,强调书写格式,对应的底和高)。
(设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
(设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)
课后反思:
通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。
●成功经验
一、注重采用“自主探究、合作交流”的学习方式。
尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。
二、注重数学方法和数学思想的渗透。
在本节课中,主要让学生动手操作,亲自感知,利用“割补、*移”法经历了把*行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。
三、注重运用现代教学手段辅助课堂教学。
这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。
●失败教训
一、在教学中个别地方没有给学生留有足够的思考时间。
比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。
二、教学中的细节问题注意不够。
例如,发给学生的学具“*行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,,从而不利于教学*行四边形与转化后的长方形之间的联系。特别在讲这些*面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。
总之,教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!
*行四边形的面积教学设计9
教学内容:
人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。
教学目标:
①理解并掌握*行四边形的面积计算公式。
②会运用公式正确计算*行四边形的面积。
③培养操作能力和推理能力,养成积极思考的良好学习习惯。
教学重点:
理解并掌握*行四边形的面积计算公式。
教学难点:
*行四边形的面积计算公式的推导。
教具和学具:
电脑、课件、*行四边形、长方形、剪刀、尺。
教学过程:
一、前提测评。
1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
2、(课件出示*行四边形教具)这又是什么图形?*行四边形有什么特征?
3、指出*行四边形对边上的高。
二、认定目标。
1、(出示*行四边形)谈话引入:你想知道这个*行四边形面积有多大吗?[板书课题:*行四边形的面积]
2、看到这个课题,大家想学习哪些知识呢?
三、导学达标。
(一)用数方格的方法求*行四边形的面积。
(1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求*行四边形的面积。(电脑显示数方格的方法)
⑵引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?
(3)谈话:虽然我们用数方格的方法求出这个*行四边形的面积,但如果要求一个很大的*行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算*行四边形的面积呢?
(二)推导*行四边形的面积计算公式。
⑴、学生实验操作。
谈话:请拿出你的*行四边形,想办法把*行四边形剪、拼成长方形。
在剪、拼前,大家想一想长方形的特征是怎样的?
a、学生实验操作。
b、问:你是怎样把*行四边形剪、拼成长方形的?
c、电脑显示剪拼过程。
⑵、讨论拼成的长方形与原*行四边形的关系。
a、谈话:*行四边形可以剪、拼成长方形,它们之间有什么关系呢?
①*行四边形与拼成的长方形的面积有什么关系?
②*行四边形的底、高分别与拼成的长方形的长、宽有什么关系?
③长方形的面积公式怎样表示?
④*行四边形的面积公式怎样表示?
b、谈话:请看屏幕,根据提纲大家仔细观察*行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原*行四边形的底、高、面积的关系。)
c、板书:
长方形的面积=长×宽
‖‖‖
*行四边形的面积=底×高
d、齐读两遍公式
(三)实际运用。
1、导语:我们理解并掌握了*行四边形的面积计算公式,那么,会运用公式正确计算*行四边形的面积吗?
2、学生运用公式计算方格图中的*行四边形的面积。
⑴、学生计算。[板书:6×3=18(*方厘米)]
⑵、谈话:运用公式和数方格的方法求这个*行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求*行四边形的面积。
3、强调运用公式计算*行四边形面积的条件。
师小结:由此可见,运用公式求*行四边形的面积必须知道哪两个条件?
4、谈话:我们已经知道*行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。
⑴、出示例题,学生默读一遍:
一块*行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整*方米)
⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?
(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?
⑶、学生列式计算,一生板演。
⑷、评讲。
(五)实际应用训练。
①课本p72.2
②p73.5
四、教师总结:你有什么收获?
五、谈话:刚才你们不是想知道自己做的*行四边形的面积有多大吗?
看谁算得最快?
六、作业:72页
评议记录:
本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。
本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。
*行四边形的面积教学设计10
设计理念:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解*行四边形与长方形的等积转化,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出*行四边形等积转化成长方形面积。
教学内容:
五年级上册第79-81页《*行四边形的面积》。
教学目标:
1、通过剪一剪,拼一拼的方法,探索并掌握*行四边形的面积计算公式。能正确计算*行四边形的面积。
2、通过操作、探究、对比、交流,经历*行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测—验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。
学情分析:
*行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解*行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等*面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历*行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。
教学重点:掌握*行四边形面积计算公式。
教学难点:*行四边形面积计算公式的推导过程。
教具准备:课件、*行四边形纸片、剪刀、直尺、三角板等。
学具准备:2块*行四边形彩色纸片、三角板、直尺、剪刀。
教学过程:
课前活动:
1、游戏:小小魔术师。教师出示不规则图形。
你能将这些图形分别变成我们学过的一个*面图形吗?(强调变形后的图形形状变了,面积不变。)
2、现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?
小结:刚才同学们先将不*整的部分剪下,再*移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)
设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过图形变形唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究*行四边形面积公式的推导打下坚实的基础。
一、故事引入,激起质疑
1、故事:今天老师给大家带来了一个故事,想听吗?我看有的同学不想听!用行动告诉老师你想听。
一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?
阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的话,你就得答应我,把欠长工的钱全部付清,怎么样?”
巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”
2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?
我们说的毛毯的大小指的是毛毯的什么?
以前我们学过哪些图形的面积,计算公式是什么?
3、这节课我们继续研究面积:*行四边形的面积。(板书课题)
以前学过的长方形和正方形的面积对我们今天的学习可能会有帮助。
设计意图:思维是从疑问和惊奇开始的。以故事引入,产生疑问,从而激发学生极大的学习、探索热情。
二、动手操作,探究方法
(一)猜想
请同学们拿出学具袋中中的*行四边形,看一看,摸一摸、想一想,大胆猜测一下:*行四边形的面积怎样计算呢?
根据学生猜测,板书:可能出现(底×高或底×邻边)
根据学生的回答随机让学生画高,指名板演并强调*行四边形的高有无数条
(二)验证
1、到底哪种猜测正确呢?这就需要我们进行验证才知道。
2、思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个*行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?
3、静静地想,想好了吗?
(三)操作
1、探究活动步骤:
想好了,我们来看“深入探究活动”,分三步进行:
第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。
第二步:结合剪拼过程,思考这三个问题:大声读出来!
深入探究学习卡
①通过剪一剪,拼一拼,我们把*行四边形变成了什么图形?
②剪拼后的图形与原来的*行四边形相比,什么不变?”
③剪拼后的图形各部分和原来*行四边形各部分之间有什么关系
第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。
明白了吗?比比看,哪个小组进行的又快又好!开始吧!
2、学生活动,教师参与。
请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。
3、汇报交流
(1)汇报剪拼过程。
一边演示,一边说说你的剪拼过程。
(2)指导规范叙述:
(板书:沿高剪*移)并追问:为什么要沿高剪?
(四)推导
1、汇报探究的三个问题。
结合剪拼过程,谁来说说你对这三个问题的思考?
①通过剪一剪,拼一拼,我们把*行四边形变成了长方形。
②剪拼后的长方形与原来的*行四边形相比,面积不变。
③剪拼后的长方形的长和原来*行四边形的底相等,长方形的宽和原来*行四边形的高相等。
2、汇报交流:面积不变,长---底,宽---高
追问:你怎么知道*行四边形的面积和剪拼后的长方形面积相等?
请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。
师板书:*行四边形的面积=底×高
长方形的面积=长×宽
设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握*行四边形和转化后的长方形之间的联系,从而为后面*行四边形面积公式的总结奠定基础。
(五)结论
1、证实猜想,得出结论:*行四边形的面积=底×高是正确的
2、用字母表示:S=ah
三、解决问题,拓展延伸
1、算一算:在我们的生活当中,*行四边形随处可见,出示情境图,你发现了哪些*行四边形?你会计算吗?
2、你能算出芸芸家这块菜地的面积吗?
题上给了这么多信息,应该怎么选择呢?试试看,你一定行!
看来,计算*行四边形的面积必须是一组相对应的底和高相乘才行啊!
3、接下来大家要加油噢!看,向你挑战!怕不怕?
下面两个*行四边形,它们的面积一样大吗?
小结:判断*行四边形的面积,只要抓住哪两个关键点就行了?
四、全课小结,完善新知:
现在大家看:哪块毛毯的面积大呢?
你猜对了吗?巴依呢?阿凡提是运用智慧获得成功!
同学们知道吗?阿凡提在人们心中是智慧的化身。这节课,我们也运用我们的智慧,利用转化的方法,探究出了*行四边形的面积。在老师心目中,你们比阿凡提还了不起!老师为大家感到骄傲!
设计意图:小结既呼应了开头的情景,也让学生感受到数学就在我们身边。数学离不开生活,生活中处处有数学。培养学生爱数学的情感,树立能学好数学的信心。
*行四边形的面积教案(扩展6)
——《*行四边形的判定》教案3篇
《*行四边形的判定》教案1
一、教学目标
经历探索*行四边形判别条件的过程,培养学生操作、观察和说理能力;掌握两组对边分别相等的四边形是*行四边形这一判别条件。
二、教材分析
本节课是在学生学习了*行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是*行四边形。
三、教学重难点
重点:
探索并掌握*行四边形的判别条件。
难点:
对*行四边形判别条件的理解及说理的基本方法的掌握。
四、教学准备
两根长40厘米 和两根长30厘米的木条
五、教学设计
首先复习*行四边形的定义,然后通过学生活动发现*行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做” ,“议一议” 以及“随堂练习”加深对*行四边形判定定理的理解。
六、教学过程
1、复习*行四边形的定义。(旨在为证明一个四边形是*行四边形做铺垫)
2、小组活动
用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成*行四边形?与同伴进行交流。 (通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是*行四边形;对边不相等时,所围成的四边形不是*行四边形)。 *行四边形的判定定理——两组对边相等的四边形是*行四边形。
3、课本91页的“做一做” (其目的是巩固和应用“两组对边相等的四边形是*行四边形”的判定定理。)
4、“议一议”
问题1、一组对边*行,另一组对边相等的四边形一定是*行四边形吗?说说你的想法。 (先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)
问题2、要判别一个四边形是*行四边形,你有哪些方法?
5、通过课本的“随堂练习”,使学生对*行四边形的判别条件加以应用和巩固
《*行四边形的判定》教案2
教学目的:
1、深入了解*行四边形的不稳定性;
2、理解两条*行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握*行四边形的定义,*行四边形性质定理1、定理2及其推论、定理3和四个*行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。
教学重点:
*行四边形的性质和判定。
教学难点:
性质、判定定理的运用。
教学程序:
一、复习创情导入
*行四边形的性质:
边:对边*行(定义);对边相等(定理2);对角线互相*分(定理3)夹在*行线间的*行线段相等。
角:对角相等(定理1);邻角互补。
*行四边形的判定:
边:两组 对边*行(定义);两组对边相等(定理2);对角线互相*分(定理3);一组对边*行且相等(定理4);两组对角分别相等(定理1)
二、授新
1、提出问题:*行四边形有哪些性质:判定*行四边形有哪些方法:
2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。
4、反馈归纳:根据预习和讨论的效果,进行点拨指导。
5、尝试练习:完成习题,解答疑难。
6、深化创新:*行四边形的性质:
边:对边*行(定义);对边相等(定理2);对角线互相*分(定理3)夹在*行线间的*行线段相等。
角:对角相等(定理1);邻角互补。
*行四边形的判定:
边:两组 对边*行(定义);两组对边相等(定理2);对角线互相*分(定理3);一组对边*行且相等(定理4);两组对角分别相等(定理1)
7、推荐作业
1、熟记“归纳整理的内容”;
2、完成《练习卷》;
3、预习:(1)矩形的定义?
(2)矩形的性质定理1、2及其推论的内容是什么?
(3)怎样证明?
(4)例1的解答过程中,运用哪些性质?
思考题
1、*行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?
跟踪练习
1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是*行四边形。( )
2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是*行四边形。
3、下列条件中,能够判断一个四边形是*行四边形的是( )
(A)一组对角相等; (B)对角线相等;
(C)两条邻边相等; (D)对角线互相*分。
创新练习
已知,如图,*行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是*行四边形。(用两种方法)
达标练习
1、已知如图,O为*行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是*行四边形。
2、已知:如图,*行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。
综合应用练习
1、下列条件中,能做出*行四边形的是( )
(A)两边分别是4和5,一对角线为10;
(B)一边为4,两条对角线分别为2和5;
(C)一角为600,过此角的对角线为3,一边为4;
(D)两条对角线分别为3和5,他们所夹的锐角为450。
推荐作业
1、熟记“判定定理3”;
2、完成《练习卷》;
3、预习:
(1)“*行四边形的判定定理4”的内容 是什么?
(2)怎样证明?还有没有其它证明方法?
(3)例4、例5还有哪些证明方法?
《*行四边形的判定》教案3
一、教学目标
【知识与技能】
通过*行四边形的性质,理解并探索并掌握*行四边形的判定条件,并能根据条件判定*行四边形。
【过程与方法】
经历*行四边形判别条件的探索过程,逐步掌握*行四边形判定的基本方法;在与他人交流的过程中,能合理清晰地表达自己的思维过程。
【情感态度与价值观】
主动参与探索的活动中,发展合情推理意识、主动探究的习惯,激发学习数学的热情和兴趣。
二、教学重难点
【重点】*行四边形的判定方法。
【难点】*行四边形判定方法的应用。
三、教学过程
(一)导入新课
出示下图:学生观察下图,并提出下列问题。
提问:1.上图是什么图形呢?回忆*行四边形的定义,并从边、角、对角线、对称性四个角度回忆*行四边形的性质?
2.我们可以说怎么样的一个图形是*行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是*行四边形呢?
(二)生成新知
通过前面的学习,我们知道,*行四边形的对边相等,对角相等,对角线互相*分。那么反过来,对边相等或对角线互相*分的四边形是不是*行四边形呢?下面我们就来验证一下。
实验一:取两长两短的四根木条用小钉绞和在一起,做成一个四边形,使等长的木条成为对边。转动这个四边形,使它形状改变,在图形变化的过程中,它是什么图形呢?体制都是*行四边形吗?
实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是什么图形呢?一直是一个*行四边形吗?
下面我们分组进行实验,一前后桌为一组的小组进行分组讨论,十分钟的讨论时间,小组需要的结合图形回答下列问题
提问1:你能写出两个实验中的已知条件和求证条件吗?
提问2:根据你写的已知条件,你能得到求证的条件吗?
提问3:通过上面的两个问题,最后你得到什么结论呢?
引导学生总结归纳出结论:
两组对边分别相等的四边形为*行四边形;
两组对角线分别相等的四边形为*行四边形;
对角线互相*分的四边形是*行四边形。
出示例题,通过对角线互相*分的四边形的*行四边形的是*行四边形为例,讲解并验证:
如图所示,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD。求证:四边形ABCD是*行四边形。
引导学生总结归纳出具体解题步骤:
(三)应用新知
1.在*行四边形ABCD中,AC、BD相交于点O。
(1)若AD=8cm,AB=4cm,那么当BC=_________cm,CD=________cm时,四边形ABCD为*行四边形;
(2)若AC=10cm,BD=8cm,那么当AO=________cm,DO=________cm时,四边形ABCD为*行四边形。
(四)小结作业
小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?
作业:想一想,*行四边形还有哪些性质?这些性质定理的逆命题都可以证明是*行四边形吗?
四、板书设计
五、教学反思
*行四边形的面积教案(扩展7)
——《*行四边形》的教学反思3篇
《*行四边形》的教学反思1
一、对教材的理解方面:
*行四边形面积的计算是学生在学习了长方形、正方形面积和*行四边形的初步认识,会画*行四边形的高的基础上进行教学的。教材以主题图中的的两个花坛比较大小,一个是长方形、一个是*行四边形,长方形面积学生已经会算,而*行四边形的花坛面积不会计算从而使学生产生疑问,激发学生的学习兴趣和求知欲,从而引出课题进行本节课的教学。教材通过两种方法来推导*行四边形面积的计算公式,第一种是用数方格的方法,第二种是采用画—剪—拼,把*行四边形转化成我们已经学过的长方形的方法。
二、教学目标方面:
1、使学生通过探索,理解掌握*行四边形的面积计算公式,会计算*行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
本节课,我个人认为这个*行四边形面积推导的过程是本节课的教学重点也是难点,通过学生动手操作,用割补的方法把一个*行四边形转化为一个长方形,找出两个图形之间的联系,推导出*行四边形面积的计算公式。
三、在教学设计方面:
本节课我的设计思路是这样的
1、通过主题图,我要完成这些任务:长方形面积的计算公式的复习,长方形、*行四边形面积的比较,使学生产生疑问,从而引出课题、激发兴趣。
2、让学生提出*行四边形面积计算公式的猜想。
3、通过数方格,填表,对学生产生暗示,知道这个*行四边形的具体的面积。
4、用剪—拼,动手操作,转化的方法,让学生观察与长方形的关系,底=长高=宽,*行四边形面积=长方形面积,再结合数方格的时候的暗示,推导出*行四边形面积的计算公式。
5、小结同学的猜想,进一步明确面积计算公式,用字母表示公式。
6、应用公式,求*行四边形面积。
我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的",有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学片断中,教师带领学生进行实地考察幼儿园建筑工地,看到了*行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”上述这个教学片断中,对传统的*行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把*行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把*行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:*行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。
令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将*行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而*行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现*行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。
当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的*行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持*等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。
在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“*行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出*行四边形的面积?”“怎样用转化的方法把*行四边形转化成长方形呢?”这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
(四)初步体验科学探究的方法
科学探究的方法是创新能力的必要基础,是每个公民必须具备的基本素质。纵观这个片断的教学过程,初步体现了“提出问题——大胆猜测——反复验证——总结规律——灵活运用”这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的创新过程。而现有的教材较多地呈现了知识的结论,很少反映知识的产生过程。
因此,我在进行教学时对教材进行了重组,在把握教材内涵的基础上,把教材的知识结论变成学生主动参与、探究问题、发现规律的创新过程,培养了学生科学探究的精神,不仅使学生的智慧、能力得到发展,而且获得了深层次的情感体验。
《*行四边形》的教学反思2
上了*行四边形一课,觉得有以下的特点:
1、激发欲望,引导参与。
以复习长方形入手,引出课题*行四边形,让学生体会长方形和*行四边形之间的联系。从图中伸缩门入手,以主题图“为什么学校的伸缩门用*行四边形?”问题激发学生的求知欲,引导学生探究*行四边形的特性。
2、操作活动,小组探究。
⑴设计了小组活动的环节,让学生通过观察、操作、合作、交流,让不同知识水*的学生在小组学习中进行互补、互学,进一步体会*行四边形的特征。
⑵通过围一围、画一画、剪一剪等实践活动,进一步体会*行四边形的特征;通过动手做“拉一拉”三角形和*行四边形,在比较中体验、感知*行四边形的特性。
3、巩固知识,课外延伸。
让学生用自己探索的*行四边形的特征解决“伸缩门为什么做成*行四边形?”的问题。在学生掌握知识的基础上,提供一些具有一定综合性的题目,对知识进行强化巩固,提供七巧板让学生拼摆成*行四边形。布置课外实践活动,让学生结合生活实际设计了寻找身边图形的活动,使我们的学习和生活紧密相连。
《*行四边形》的教学反思3
*行四边形这部分知识对学生来说并不陌生,他们在三年级的时候初步接触过*行四边形,了解生活中的*行四边形模型,所以这节课的设计就从生活中的实物导入。
第一步:观察实物,抽象图形
我找到了一些图片让学生观察,其中有单位门口的活动门、多功能衣架、楼梯的扶手……,学生从中抽象出图形。(多媒体出示)
第二步:动手操作,合作探索
然后用学具摆出这样的图形,学生的个人学具不能摆成一个*行四边形,出现矛盾冲突点,这时摆出的图形是不规则的四边形,由此引出*行四边形的概念。
接着让他们同桌合作,利用两个人的学具合作摆出一个*行四边形,通过这个过程找到*行四边形的一个特征:对边相等。然后继续探究*行四边形的其他特征或特性,小组合作,利用摆好的*行四边形合作探究。教师在组间巡视,可以做学生引导者、倾听者、合作者、欣赏者,充分了解孩子的收获,为下面的教学做准备。这段时间有的学生问我可不可以看看书,我说当然可以,说明你可以寻找资料了!15分钟后让学生汇报,我把他们收获按照定义、特征、特性进行归类板书,学生对自己小组的收获进行讲解,寻找实例,理解掌握。有的孩子在看书的过程中认识了*行四边形的高和底,他们也很热情地向同学们介绍,我让他们进行了画高和底的练习,然后让学生介绍自己对高和底的认识,特别是引导孩子们认识到*行四边形的高有无数条,同底的高相等。
第三步:拓展延伸,课后解题
让学生利用本节课知识,做一个美丽的*行四边形,把你的收获和问题写在上面。
总之,在这节课中,我充分考虑到学生的知识基础,给学生充分的自主探究机会,尝试提出问题,然后在合作中解决问题。发展学生的自主探究、合作学习的能力。
*行四边形的面积教案(扩展8)
——《*行四边形面积计算》说课稿3篇
《*行四边形面积计算》说课稿1
一、教材简析
“*行四边形面积的计算”是九年义务教育苏教版六年制小学数学第八册第四单元第42页——44页的学习内容。教材从一年级第一册起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第七册教材中安排了*行四边形、三角形和梯形的认识,清楚了解其特征及底和高的概念。而本册(第八册)教材中"*行四边形面积的计算"是在学生掌握上述内容的基础上安排的。使整个安排体现了线形的、层递的、系统的体系,这也完全吻合了学生的认知规律和心理特点。
因此,学生要想很好地理解与掌握*行四边形面积公式,就必须以长方形的面积计算和*行四边形的特征为基础,运用迁移和同化理论,使*行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。从而完成新知的建构过程。同时,也为学生自主学习三角形面积和梯形面积的计算夯实基石。
二、教学目标
认知目标:使学生理解并掌握*行四边形面积计算公式(方法),会运用*行四边形的面积公式求*行四边形的面积。
能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
三、教学重点与难点
教学重点:掌握*行四边形的面积计算公式,并能正确运用。
教学难点:把*行四边形转化学过的图形,通过找关系推导出*行四边形的面积公式。
四、教学对象分析
建构主义认为,虽然学生要学习的数学都是前人已经建造好了的,但对学生来说,仍是全新的、未知的。需要每个人再现类似的创造的过程来形成。即学生用自己的活动对人类已有的数学知识建构起自己的正确理解,而不是去仔细地吸收课本上的或教师叙述的现成结论。应该是一个学生亲身参与的充满丰富、生动的概念或思想活动的组织过程。
随着信息社会的飞速发展,小学中年级的学生已经掌握了必要的信息技术。“几何画板”的简单运用与操作已经成为了小学生形体知识的认知和探究工具。
在课堂上,学生很容易产生一些“奇异妙想”,“几何画板”凭着强大的交互性给学生以参与的机会,让学生自己操作,实现自我学习,想象力得到充分发挥,是学生成为一个真正的研究者。
“几何画板”凭借着信息*台的优势,提供了学生反复学习的机会,在学习中,反复使用它,使学生注意力更为集中,极大地激发了学生学习兴趣,调动学生学习的积极性。
学生在*行四边形的面积公式推导过程中,依据原有知识体系,以“几何画板”为探索工具,通过采用剪—移—拼的方法,对*行四边形进行转化,学生将很容易自主发现规律,及*行四边形的底就是长方形的长,*行四边形的高就是长方形的宽。
五、基本理念
整堂课在建构主义的理论指导下,充分贯彻新课程标准,从数学自身特点出发,遵循学生学习数学的心理规律,让学生从已有的经验出发,通过各种方式,自主探索,自我研究,积极完成知识的意义建构过程。
六、教法阐述、学法指导
本课采用建构主义理论指导下的主体式、抛锚式教学方式。以网络、“几何画板”为载体,为学生提供了一个活生生的学习环境,把静止的、封闭的、模式化的教学内容,转变为“开放、动态的、多元化”的学习内容,创设自主探索空间,激发自主学习兴趣,增强积极参与意识,充分培养学生的创新精神与实践能力。
建构主义学习理论强调以学生为中心,要求学生由知识的灌输对象转变为信息加工的主体。故此,本课教学过程中,巧妙设计,让学生通过课堂讨论、相互合作、实际操作等方式,自我探索,自主学习,使学生在完成任务的过程中不知不觉实现知识的传递、迁
移和融合。
七、教学准备
提供“几何画板”软件*台和相关课件,制作一个开放式的、且具有人文性的数学专题网站,为学生搭建好协作学习的舞台。
八、教学过程
学生是数学学习的主人,教师则成了学生数学学习的组织者、引导者与合作者。根据本课教学内容结合四年级学生的实际认知水*和生活情感,坚持“以人为本”“发展至上”的思想,特设计教学流程如下:
(一)利用“几何画板”创设情境,激情导入
首先用鲜为人知的“孙悟空变戏法”的故事激发学生学习情感,调动学生参与的积极性,接着让学生点击老师推荐的学习专题网上的“试一试”链接到“几何画板”进行剪拼操作。
此环节设计目的是利用“几何画板”创设美好的学习情境,调动学生的积极性,激发学生的学习兴趣,使学生在情景中主动、积极地接受任务,从而乐学。
(二)、利用“几何画板”大胆放手导学达标
1、数格子算面积。
2、猜想*行四边形的面积可能和什么有关?
3、证明猜想
在证明猜想是否正确时,大胆放手,指导学生在“几何画板”上操作,并小组合作完成填空:长方形的面积与原*行四边形的面积_________,长方形的长相当于*行四边形的________,
因为长方形的面积=_________,所以*行四边形的面积=_________。
经师生互动、交流,得出了*行四边形的面积计算公式:*行四边形的面积=底*高。
建构主义提倡在教师指导员下的以学习者为中心的学习,就是强调学习者在学习过程中的认知主体地位。应用“几何画板”,可以创设情境,让学生主动参与到数学活动中,亲自去体验,更强烈地激发学生装的学习兴趣,可以更全面、更方便地揭示新旧知识之间的联系,为学生实现“意义建构”创造了良好的条件。
(三)、利用网络,精心设计形式多样的练习。
传统的板演练习只能暴露几个学生的学习情况,代表性不强,在网络教室中,教师可以根据需要调阅任意一个学生的学习情况,以便及时地加以纠正。在本课中,我把练习设计设计成“试试你的本领”。让学生自由上网自由选题进行训练。同学可以调阅学习伙伴的学习情况。也可以利用网络进行讨论。能力差点的学生可以得到更多的关心,真正体现生生互动。
(四)、归纳总结,拓展延伸
教师引导学生自己先进行课堂小结,有助于知识的巩固和自主学习能力的提高,通过学生归纳本课内容,使学生更清楚地认识到今天到底学什么。通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,体验到学习成功的快乐。教师顺势揭示了课题,突出重点。
课末提出了“你还能用折纸或其他方法证明*行四边形的面积计算公式吗?”。鼓励学生想出多种方法来证明*行四边形面积的计算公式,体现了方法多样化,使学生体验了解决问题策略的多样性,提高了学生的学习能力,更培养了学生的创新精神。
在课的组织形式上,我们将通过“师生互动”、“生生互动”和“人机对话”等多种形式,使学生在积极的互动中相互协作、相互学习,最终达到“信息互补”、共同提高的目的。
纵观本课设计,我们则坚持以“学生为本”“以学定教”的思想,凭借网络强大的功能,给学生以积极参与的机会,鼓励学生自己动手操作,自我探索,自我发现,自我发展,成为一个真正的研究者与探索者、建构者。
《*行四边形面积计算》说课稿2
一、教材分析。
这个内容是五年级上册《多边形的面积》的第一课时。发展学生的空间观念,是新课标教材从一至九年级始终贯彻的一个重要内容,是按由易到难梯次渐进的。《*行四边形的面积》在本册教材中占有重要的地位。它的教学是在学生已经掌握并能灵活运用长方形面积计算公式,了解、理解*行四边形特征的基础上进行的。而且这部分知识的学习运用会为学生学习后面的三角形、梯形,圆等*面图形乃至立体图形表面积奠定良好的基础。由此可见,本课的内容在整个教材体系中起到了承上启下的作用。
二、学生分析。
五年级学生在新课程沐浴下成长。在灵活开放的课堂中,他们善于独立思考,乐于合作交流,而且已经掌握了*行四边形的特征和长方形面积的计算方法,这些都为本节课的学习奠定了坚实的基础。但是小学生的空间想象力不够丰富,对*行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
三、确立目标。
根据新课标的要求及教材的特点,充分考虑到五年级学生的思维水*,我们确立如下三维教学目标:
知识与能力目标:通过学生自主探索、动手实践推导出*行四边形面积计算公式,并能利用公式解决生活中的问题。
过程与方法目标:让学生经历*行四边形面积公式的推导过程,通过操作、观察、比较活动,发展学生的空间观念,渗透转化的思想方法。
情感态度与价值观目标:使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。渗透思想品德教育以及环保意识。
四、教学过程设计。
下面我重点说说这节课的教学过程设计。《基础教育课程改革纲要》中所倡导的新教学观明确指出:“教学过程不只是课程传递和执行的过程,更是课程创新与开发的过程。”因此,在这节课我们把数学知识的教学融于现实情境中,学生在情境中学的高兴,学的扎实。老师创设了“普罗旺斯小区中的*行四边形”这一个情况,将新知的学习与练习都置于这一生活情景中,通过求车位、花圃的面积和温馨提示牌的涂漆面积,设计图形等活动,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。设计本节课时我们遵循:“以教师为主导,学生为主体”的教学原则,运用把新知转化为已学的知识,用旧知推导出解决新知的方法,确立了如下几个教学环节:
(一)情景引入,激趣导课。
为了跳出陈旧的数学课单纯讲知传道的框架,让学生体会到数学生活的快乐。在新课的开始,我们结合普罗旺斯小区中的停车位进行导入新课,让学生在一个生动的教学中开始探究活动。
先利用课件出示一个长方形的停车位和一个*行四边形的停车位。它们虽然形状不一,但面积相同。然后教师结合情景图渗透思想教育。人们的生活水*提高的同时精神文明也在提高。李明家和张海家都想把面积大的停车位让给对方。这时,教师抛出问题:你有什么办法知道这两个停车位的面积哪个大呢?因为情景图上的停车位贴有瓷砖,学生会用数格子的方法数出每个停车位有多少块瓷砖,再进行比较。接着,再出示一幅*行四边形草坪图。教师提问:这块草坪还能用数格子的方法求它的面积吗?如果不能,那你又有什么办法知道它的面积呢?通过这两个问题揭示课题――*行四边形的面积。
这部分教学通过创设一个学生熟悉的生活情景图,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生的主体作用奠定了基础。让学生体会到学习*行四边形的面积计算与实际生活的联系,体现数学的实际应用价值。
(二)动手操作,探究新知。
数学课程标准提出:有效的数学学习不能单纯的依靠模仿和记忆,动手操作、自主探索、合作交流是学习数学的有效方式。*行四边形的面积计算怎样探究,从哪开始探究学生有一定的困难。在这个环节的设计中我们采用小组合作的教学法让学生探索*行四边形的面积。学生可以在小组内发表自己的见解,倾听同学的想法,不断调整自己的方案,经历*行四边形面积计算公式的推导过程。提高了他们的数学素养[内容来于Y-Y_课-件_园 ],同时也学会了合作交流。先让学生动手操作,再用课件演示剪拼过程,加深*行四边形转化成长方形过程的理解,最后整理成文字填空形式,推导出公式。
(三)分层训练,理解内化。
本着“重基础,验能力,拓思维”的原则,我们设计了三个层次的练习,为不同的学生提供了各自施展的舞台,同时也体现数学知识的生活化。
第一层:基本练习。利用所学知识计算情景图中停车位的面积,由学生偿试计算,集体订正。再次使学生对公式有一个完整的认识与强化。
第二层:综合练习。通过不同的高引起学生的混淆。在计算中让学生明确计算*行四边形面积时要注意底与高的对应。
做完这里的练习,学生可能已经感到有些疲劳,所以下面穿插两幅美景让学生欣赏。在欣赏的过程又引出更深的练习。给*行四边形的提示牌两面刷油漆,求刷漆的面积。这题的用意是培养学生认真分析题目,充分找出题目中有利条件。
第三层:拓展思维。小小设计师,根据面积设计图形。这是开放性的练习,让学生充分展开想象。意在培养学生的空间想象和解决问题的能力。
(四)课堂总结,巩固新知。
结课之前,教师抛出:今天学习了什么?你有什么收获?紧接着教师个别提问,让学生谈谈自己的收获。最后教师再作小结。目的是使学生对本节课所学的知识有一个系统的认识,培养学生整理知识的能力。
五、说板书。
*行四边形的面积
长方形的面积= 长 × 宽
*行四边形的面积= 底 × 高
这节课的板书是这样设计的,在这个板书中简洁明了的概括这节课的主要内容,通过把*行四边形转化成长方形推导出了计算公式。这三个等号让学生更加明白*行四边形的底和高与转化后的长方形的长和宽的关系,加深对公式来源的理解。
六、预设效果。
这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间。利用学生熟悉的停车位导入,能激发学生的学习兴趣,课堂气氛一定会十分活跃。而重点部分的`教学采取让学生小组合作、动手操作实践,可以使学生互相督促,全员参与,保证了课堂教学效果。教师深入浅出的引导和充满激励的语言,将会给学生不断探究的动力和热情;而层次分明难易适度的练习题,也使新知得到巩固和应用。可以说本课的教学环环相扣,清晰有序,一定会取得令人满意的效果。我的说课到此结束,谢谢各位。
《*行四边形面积计算》说课稿3
一、说教材
(一)教学内容:义务教育六年制小学数学课本(试用)第八册第三单元“*行四边形、三角形和梯形”中的“*行四边形的面积计算”。
(二)教材分析:[数学网更多小学数学说课稿]
*行四边形的面积计算教学是在学生掌握了*行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材在编写时注意培养学生实际操作能力。教材以*行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导*行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个*行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出*行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了*移旋转的思想,为将来学习图形的变换积累一些感性认识。
(三)学生分析:
学生已经掌握了*行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对*行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
(四)教学目标预设:
结合本节课所学知识特点和学生的思维特点现拟定如下目标:
1.知识目标:通过长方形面积计算知识迁移,理解*行四边形面积的计算公式,并能正确计算*行四边形面积。
2.能力目标:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。
3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养互相合作、交流、评价的意识。
4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
(五)教学重点、难点及关键点剖析:
通过实践――理论――实践来突破掌握*行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点*行四边形面积公式的推导。关键是*行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出*行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成*行四边形。
(六)教具、学具准备:
多媒体、*行四边形课件,学生准备任意大小的*行四边形纸片、三角板、剪刀。
二、说教法、学法
(一)设计理念:
《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段引导每一个学生积极主动地参与学习过程。
“问题是数学的心脏。”、“问题是一切思维的起点。”在教师创设的情境中,学生利用原有的知识和技能无法直接解决问题,就会产生认知上的矛盾、内在的需要和学习的驱动力,从而积极、主动地去学习。
数学学习活动是一个以学生已有知识和经验为基础的主动建构过程,学习者能否主动建构形成良好的认知结构,取决于原有的认知结构里是否具有清晰、可同化新知识的观念,以及这些观念的稳定情况,所以教师不仅应从整体上把握教材知识结构,而且应从纵向考虑新旧知识是如何沟通联系的。
每个人都以自己的方式理解事物的某些方面,学习过程要增进学习者之间的合作,使其看到那些与自己不同的观点,完善对事物的理解,教师是意义建构的帮助者、促进者,而不是知识的提供者和灌输者,应成为学生学习的高级伙伴或合作者。教师应重视师生之间、生生之间的相互作用,通过创设情境和组织学生合作与讨论,使学生认识事物的各个方面,在已有知识和经验的基础上建构新知识。
学生是学习的主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。未来的社会既需要学生具有获取知识的能力,也需要学生具有应用知识的能力,而知识也只有在能够应用时才具有生命力,才是活的知识。
(二)说教法
本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。
在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。[数学网更多小学数学说课稿]
在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。
在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。
(三)说学法
坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。
小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。
三、说教学过程
为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学过程分为以下几个教学环节:
(一)创设情境,设疑引入
王林家和张强家各有一块地,
4米4米
王林家 张强家
6米 6米
可是谁家的地面积能大些呢?他俩都想知道,同学们,你们愿意帮助他们吗?大家先猜猜看?让学生猜想长方形和*行四边形面积的大小?为什么?主要是向学生暗示了当长方形与*行四边形长与底,宽与高分别相等时,它们的面积会相等,初步感知到*行四边形的面积与底和高有关。王林家的地是长方形,我们能求出面积。而张强家的地是*行四边形,怎样来求*行四边形的面积呢?这就是我们今天要研究的*行四边形的面积计算。
这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。
(二)操作探索,推导公式
1、数方格法求面积(课件出示)
给上面的二块地的长、宽与底、高分别缩小100倍(变成了6厘米和4厘米)再加上网格,如上图,(不满一格按半格计算,每小格表示1*方厘米)数完后,你发现了什么?
这样设计,让学生掌握用数来计算*行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了*行四边形的面积=底×高。
2、动手实践,推导公式
①实践操作
教师启发谈话,如果要求在实际生活中*行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。那么*行四边形的面积到底与什么有关?再通过课件出示:当*行四边形的高不变,它的面积随着底边的缩小而缩小,说明*行四边形的面积与底有关;当*行四边形的底不变,它的面积随着高的缩小而缩小,也说明了*行四边形的面积与高有关。我们已学过了长方形和正方形的面积计算公式,能不能根据已掌握的知识来解决新知,求出*行四边形的面积呢?然后让学生实践操作,想办法把*行四边形转化成长方形。要鼓励学生多角度思考问题,再通过合作交流,能想出各种方法将*行四边形转化成长方形。
(课件出示)
让学生通过动手操作拓展了学生思维的空间,这样不仅强化*移转化方法在实际中的应用,也大大提高了学生运用已有知识解决实际问题的能力,注重了知识的获得过程。
②归纳方法
提问:剪拼后的长方形与原来的*行四边形有什么关系?*行四边形的面积怎样计算?为什么?用字母怎样表示?
在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。
3、学习例题
例 一块*行四边形的草地,底是18米,高是10米。这块草地的面积是多少?
这道例题及时地巩固了所学知识。
(三)巩固练习,应用深化
1.现在我们不用数方格的方法,也能知道王林家和张强家地面积的大小了。并完成P71 试一试
2.完成P71练一练1、2
3.选择正确的算式:
求出下图的面积(单位:分米)
A.12×5( );B.12×10( ); C.10×6( ); D.5×6( )。
4.猜谜游戏:
有一个*行四边形,它的面积是12*方分米,请你猜一猜它的底和高各应是多少分米?看谁猜出的答案最多。
并说明等以后学习了分数乒,还会有更多的答案。
5.思考题
用铁丝围一个右图这样的*行四边形,至少需要用多长的铁丝?
(单位:厘米)
(四)全课总结,质疑问难
让学生说说本节课学到的知识,并说说是怎样学到的,还有什么问题要与教师或同学们商讨吗?目的是使学生对本节课所学的知识有一个系统的认识,培养学生整理知识的能力,和质疑问难的能力。
附板书设计: 长方形面积= 长×宽
↓ ↓ ↓
*行四边形面积。